wrap.SMC {NTS} | R Documentation |
Sequential Monte Carlo Using Sequential Importance Sampling for Stochastic Volatility Models
Description
The function implements the sequential Monte Carlo method using sequential importance sampling for stochastic volatility models.
Usage
wrap.SMC(par.natural, yy, mm, setseed = T, resample = T)
Arguments
par.natural |
contains three parameters in AR(1) model. The first one is the stationary mean, the second is the AR coefficient, and the third is stationary variance. |
yy |
the data. |
mm |
the Monte Carlo sample size. |
setseed |
the seed number. |
resample |
the logical value indicating for resampling. |
Value
The function returns the log-likelihood of the data.
References
Tsay, R. and Chen, R. (2018). Nonlinear Time Series Analysis. John Wiley & Sons, New Jersey.
[Package NTS version 1.1.3 Index]