g_cfar2h {NTS} | R Documentation |
Generate a CFAR(2) Process with Heteroscedasticity and Irregular Observation Locations
Description
Generate a convolutional functional autoregressive process of order 2 with heteroscedasticity, irregular observation locations.
Usage
g_cfar2h(
tmax = 1001,
grid = 1000,
rho = 1,
min_obs = 40,
pois = 5,
phi_func1 = NULL,
phi_func2 = NULL,
weight = NULL,
ini = 100
)
Arguments
tmax |
length of time. |
grid |
the number of grid points used to construct the functional time series. |
rho |
parameter for O-U process (noise process). |
min_obs |
the minimum number of observations at each time. |
pois |
the mean for Poisson distribution. The number of observations at each follows a Poisson distribution plus min_obs. |
phi_func1 |
the first convolutional function. Default is 0.5*x^2+0.5*x+0.13. |
phi_func2 |
the second convolutional function. Default is 0.7*x^4-0.1*x^3-0.15*x. |
weight |
the weight function to determine the standard deviation of O-U process (noise process). Default is 1. |
ini |
the burn-in period. |
Value
The function returns a list with components:
cfar2 |
a tmax-by-(grid+1) matrix following a CFAR(1) process. |
epsilon |
the innovation at time tmax. |
References
Liu, X., Xiao, H., and Chen, R. (2016) Convolutional autoregressive models for functional time series. Journal of Econometrics, 194, 263-282.
Examples
phi_func1= function(x){
return(0.5*x^2+0.5*x+0.13)
}
phi_func2= function(x){
return(0.7*x^4-0.1*x^3-0.15*x)
}
y=g_cfar2h(200,1000,1,40,5,phi_func1=phi_func1,phi_func2=phi_func2)