Sstep.Clutter {NTS} | R Documentation |
Sequential Monte Carlo for A Moving Target under Clutter Environment
Description
The function performs one step propagation using the sequential Monte Carlo method with partial state proposal for tracking in clutter problem.
Usage
Sstep.Clutter(mm, xx, logww, yyy, par, xdim, ydim)
Arguments
mm |
the Monte Carlo sample size |
xx |
the sample in the last iteration. |
logww |
the log weight in the last iteration. |
yyy |
the observations. |
par |
a list of parameter values |
xdim |
the dimension of the state varible. |
ydim |
the dimension of the observation. |
Value
The function returns a list with the following components:
xx |
the new sample. |
logww |
the log weights. |
References
Tsay, R. and Chen, R. (2018). Nonlinear Time Series Analysis. John Wiley & Sons, New Jersey.
Examples
nobs <- 100; pd <- 0.95; ssw <- 0.1; ssv <- 0.5;
xx0 <- 0; ss0 <- 0.1; nyy <- 50;
yrange <- c(-80,80); xdim <- 2; ydim <- nyy;
simu <- simuTargetClutter(nobs,pd,ssw,ssv,xx0,ss0,nyy,yrange)
resample.sch <- rep(1,nobs)
mm <- 10000
yr <- yrange[2]-yrange[1]
par <- list(ssw=ssw,ssv=ssv,nyy=nyy,pd=pd,yr=yr)
yr<- yrange[2]-yrange[1]
xx.init <- matrix(nrow=2,ncol=mm)
xx.init[1,] <- yrange[1]+runif(mm)*yr
xx.init[2,] <- rep(0.1,mm)
out <- SMC(Sstep.Clutter,nobs,simu$yy,mm,par,xx.init,xdim,ydim,resample.sch)