SMC.Smooth {NTS} | R Documentation |
Generic Sequential Monte Carlo Smoothing with Marginal Weights
Description
Generic sequential Monte Carlo smoothing with marginal weights.
Usage
SMC.Smooth(
SISstep,
SISstep.Smooth,
nobs,
yy,
mm,
par,
xx.init,
xdim,
ydim,
resample.sch,
funH = identity
)
Arguments
SISstep |
a function that performs one propagation step using a proposal distribution.
Its input includes |
SISstep.Smooth |
the function for backward smoothing step. |
nobs |
the number of observations |
yy |
the observations with |
mm |
the Monte Carlo sample size |
par |
a list of parameter values. |
xx.init |
the initial samples of |
xdim |
the dimension of the state variable |
ydim |
the dimension of the observation |
resample.sch |
a binary vector of length |
funH |
a user supplied function |
Value
The function returns the smoothed values.
References
Tsay, R. and Chen, R. (2018). Nonlinear Time Series Analysis. John Wiley & Sons, New Jersey.