palm.cppm {NScluster} | R Documentation |
Non-parametric and Parametric Estimation for Palm Intensity
Description
Compute the non-parametric and the parametric Palm intensity function of the Neyman-Scott cluster point process models and their extensions.
Usage
palm.cppm(mple, pars = NULL, delta = 0.001, uplimit = 0.3)
## S3 method for class 'Palm'
print(x, ...)
Arguments
mple |
an object of class "mple". |
pars |
a named vector of the true parameters, if any. |
delta |
a width for the non-parametric Palm intensity function. |
uplimit |
upper limit in place of |
x |
an object of class |
... |
ignored. |
Value
An object of class "Palm"
containing the following components:
r |
the distance |
np.palm |
the corresponding values of the non-parametric Palm intensity
function, which is normalized by the total intensity estimate (the mean
number of points in |
norm.palm |
the corresponding values of the normalized Palm intensity
function, i.e., |
There is another method plot.Palm
for this class.
References
Tanaka, U., Ogata, Y. and Katsura, K. (2008) Simulation and estimation of the Neyman-Scott type spatial cluster models. Computer Science Monographs 34, 1-44. The Institute of Statistical Mathematics, Tokyo. https://www.ism.ac.jp/editsec/csm/.
See Also
See sim.cppm
and mple.cppm
to simulate the
Neyman-Scott cluster point process models and their extensions and to compute
the MPLEs, respectively.
Examples
## Not run:
# The computation of MPLEs takes a long CPU time in the minimization procedure,
# especially for the Inverse-power type and the Type A models.
### Thomas Model
#simulation
pars <- c(mu = 50.0, nu = 30.0, sigma = 0.03)
t.sim <- sim.cppm("Thomas", pars, seed = 117)
## estimation => Palm intensity
init.pars <- c(mu = 40.0, nu = 40.0, sigma = 0.05)
t.mple <- mple.cppm("Thomas", t.sim$offspring$xy, init.pars)
t.palm <- palm.cppm(t.mple, pars)
plot(t.palm)
### Inverse-Power Type Model
# simulation
pars <- c(mu = 50.0, nu = 30.0, p = 1.5, c = 0.005)
ip.sim <- sim.cppm("IP", pars, seed = 353)
## estimation => Palm intensity
init.pars <- c(mu = 55.0, nu = 35.0, p = 1.0, c = 0.01)
ip.mple <- mple.cppm("IP", ip.sim$offspring$xy, init.pars, skip = 100)
ip.palm <- palm.cppm(ip.mple, pars)
plot(ip.palm)
### Type A Model
# simulation
pars <- c(mu = 50.0, nu = 30.0, a = 0.3, sigma1 = 0.005, sigma2 = 0.1)
a.sim <- sim.cppm("TypeA", pars, seed=575)
## estimation => Palm intensity
init.pars <- c(mu=60.0, nu=40.0, a=0.5, sigma1=0.01, sigma2=0.1)
a.mple <- mple.cppm("TypeA", a.sim$offspring$xy, init.pars, skip=100)
a.palm <- palm.cppm(a.mple, pars)
plot(a.palm)
### Type B Model
# simulation
pars <- c(mu1 = 10.0, mu2 = 40.0, nu = 30.0, sigma1 = 0.01, sigma2 = 0.03)
b.sim <- sim.cppm("TypeB", pars, seed = 257)
## estimation => Palm intensity
init.pars <- c(mu1 = 20.0, mu2 = 30.0, nu = 30.0, sigma1 = 0.02, sigma2 = 0.02)
b.mple <- mple.cppm("TypeB", b.sim$offspring$xy, init.pars)
b.palm <- palm.cppm(b.mple, pars)
plot(b.palm)
### Type C Model
# simulation
pars <- c(mu1 = 5.0, mu2 = 9.0, nu1 = 30.0, nu2 = 150.0,
sigma1 = 0.01, sigma2 = 0.05)
c.sim <- sim.cppm("TypeC", pars, seed = 555)
## estimation => Palm intensity
init.pars <- c(mu1 = 10.0, mu2 = 10.0, nu1 = 30.0, nu2 = 120.0,
sigma1 = 0.03, sigma2 = 0.03)
c.mple <- mple.cppm("TypeC", c.sim$offspring$xy, init.pars)
c.palm <- palm.cppm(c.mple, pars)
plot(c.palm)
## End(Not run)