mple.cppm {NScluster} | R Documentation |
MPLE of Neyman-Scott Cluster Point Process Models and Their Extensions
Description
MPLE of the five cluster point process models.
Usage
mple.cppm(model = "Thomas", xy.points, pars = NULL, eps = 0.001, uplimit = 0.3,
skip = 1)
## S3 method for class 'mple'
coef(object, ...)
## S3 method for class 'mple'
summary(object, ...)
Arguments
model |
a character string indicating each cluster point process model:
|
xy.points |
a matrix containing the coordinates |
pars |
a named vector containing a given initial guess of each
parameter. If |
eps |
the sufficiently small number to implement the optimization
procedure for the log-Palm likelihood function. The procedure is iterated
at most 1000 times until the |
uplimit |
upper limit in place of |
skip |
the variable enables one to obtain speedily the initial MPLEs, but
rough approximation. The |
object |
an object of class |
... |
ignored. |
Details
"Thomas"
(Thomas model)The Palm intensity function is given as follows:
For all
r \ge 0
,\lambda_{\bm{o}}(r) = \mu\nu + \frac{\nu}{4\pi \sigma^2} \exp \left( -\frac{r^2}{4 \sigma^2} \right).
The log-Palm likelihood function is given by
\log L(\mu,\nu,\sigma) = \sum_{\{i,j; i<j, r_{ij} \le 1/2\}} \log \nu \left\{ \mu + \frac{1}{4 \pi \sigma^2} \exp \left( -\frac{{r_{ij}}^2}{4 \sigma^2} \right) \right\}
- N(W)\nu \left\{ \frac{\pi \mu}{4} + 1 - \exp \left( -\frac{1}{16 \sigma^2} \right) \right\}.
"TypeB"
(Type B model)The Palm intensity function is given as follows:
For all
r \ge 0
,\lambda_{\bm{o}}(r) = \lambda + \frac{\nu}{4 \pi} \left\{ \frac{a}{{\sigma_1}^2} \exp \left( -\frac{r^2}{4{\sigma_1}^2} \right)+ \frac{(1-a)}{{\sigma_2}^2} \exp \left( -\frac{r^2}{4{\sigma_2}^2} \right) \right\},
where
\lambda = \nu(\mu_1+\mu_2)
anda = \mu_1/(\mu_1+\mu_2)
are the total intensity and the ratio of the intensity of the parent points of the smaller cluster to the total one, respectively.The log-Palm likelihood function is given by
\log L(\lambda, \alpha, \beta, \sigma_1, \sigma_2)
=\sum_{\{i,j; i<j, r_{ij} \le 1/2\}} \log \left[ \lambda + \frac{1}{4 \pi} \left\{ \frac{\alpha}{{\sigma_1}^2} \exp \left( -\frac{{r_{ij}}^2}{4{\sigma_1}^2} \right) + \frac{\beta}{{\sigma_2}^2} \exp \left( -\frac{{r_{ij}}^2}{4{\sigma_2}^2} \right) \right\} \right]
- N(W) \left[ \frac{\pi \lambda}{4} + \alpha \left\{ 1 - \exp \left( -\frac{1}{16{\sigma_1}^2} \right) \right\} + \beta \left\{ 1- \exp \left( -\frac{1}{16{\sigma_2}^2} \right) \right\} \right],
where
\alpha = a\nu
and\beta = (1-a)\nu
.
"TypeC"
(Type C model)The Palm intensity function is given as follows:
For all
r \ge 0
,\lambda_{\bm{o}}(r) = \lambda + \frac{1}{4 \pi} \left\{ \frac{a\nu_1}{{\sigma_1}^2} \exp \left( -\frac{r^2}{4{\sigma_1}^2} \right) + \frac{(1-a)\nu_2}{{\sigma_2}^2} \exp \left( -\frac{r^2}{4{\sigma_2}^2} \right) \right\},
where
\lambda = \mu_1\nu_1 + \mu_2\nu_2
anda = \mu_1\nu_1/\lambda
are the total intensity and the ratio of the intensity of the smaller cluster to the total one, respectively.The log-Palm likelihood function is given by
\log L(\lambda, \alpha, \beta, \sigma_1, \sigma_2)
= \sum_{\{i,j; i<j, r_{ij} \le 1/2\}} \log \left[ \lambda + \frac{1} {4 \pi} \left\{ \frac{\alpha}{{\sigma_1}^2} \exp \left( -\frac{{r_{ij}}^2}{4{\sigma_1}^2} \right) + \frac{\beta}{{\sigma_2}^2} \exp \left( -\frac{{r_{ij}}^2}{4{\sigma_2}^2} \right) \right\} \right]
-N(W) \left[ \frac{\pi\lambda}{4} + \alpha \left\{ 1 - \exp \left( -\frac{1}{16{\sigma_1}^2} \right) \right\} + \beta \left\{ 1- \exp \left( -\frac{1}{16{\sigma_2}^2} \right) \right\} \right],
where
\alpha = a\nu_1
and\beta = (1-a)\nu_2
.
For the inverse-power model and the Type A models, we need to take the alternative form without explicit representation of the Palm intensity function. See the second reference below for details.
Value
mple.cppm
returns an object of class "mple"
containing the
following main components:
mple |
MPLE (maximum Palm likelihood estimate). |
log.mpl |
the log maximum Palm likelihood. |
aic |
AIC. |
process1 |
a list with following components.
|
process2 |
a list with following components.
|
There are other methods plot.mple
and print.mple
for this class.
References
Tanaka, U., Ogata, Y. and Katsura, K. (2008) Simulation and estimation of the Neyman-Scott type spatial cluster models. Computer Science Monographs 34, 1-44. The Institute of Statistical Mathematics, Tokyo. https://www.ism.ac.jp/editsec/csm/.
Tanaka, U., Ogata, Y. and Stoyan, D. (2008) Parameter estimation and model selection for Neyman-Scott point processes. Biometrical Journal 50, 43-57.
Examples
## Not run:
# The computation of MPLEs takes a long CPU time in the minimization procedure,
# especially for the Inverse-power type and the Type A models.
### Thomas Model
# simulation
pars <- c(mu = 50.0, nu = 30.0, sigma = 0.03)
t.sim <- sim.cppm("Thomas", pars, seed = 117)
## estimation
init.pars <- c(mu = 40.0, nu = 40.0, sigma = 0.05)
t.mple <- mple.cppm("Thomas", t.sim$offspring$xy, init.pars)
coef(t.mple)
### Inverse-Power Type Model
# simulation
pars <- c(mu = 50.0, nu = 30.0, p = 1.5, c = 0.005)
ip.sim <- sim.cppm("IP", pars, seed = 353)
## estimation
init.pars <- c(mu = 55.0, nu = 35.0, p = 1.0, c = 0.01)
ip.mple <- mple.cppm("IP", ip.sim$offspring$xy, init.pars, skip = 100)
coef(ip.mple)
### Type A Model
# simulation
pars <- c(mu = 50.0, nu = 30.0, a = 0.3, sigma1 = 0.005, sigma2 = 0.1)
a.sim <- sim.cppm("TypeA", pars, seed = 575)
## estimation
init.pars <- c(mu = 60.0, nu = 40.0, a = 0.5, sigma1 = 0.01, sigma2 = 0.1)
a.mple <- mple.cppm("TypeA", a.sim$offspring$xy, init.pars, skip = 100)
coef(a.mple)
### Type B Model
# simulation
pars <- c(mu1 = 10.0, mu2 = 40.0, nu = 30.0, sigma1 = 0.01, sigma2 = 0.03)
b.sim <- sim.cppm("TypeB", pars, seed = 257)
## estimation
init.pars <- c(mu1 = 20.0, mu2 = 30.0, nu = 30.0, sigma1 = 0.02, sigma2 = 0.02)
b.mple <- mple.cppm("TypeB", b.sim$offspring$xy, init.pars)
coef(b.mple)
### Type C Model
# simulation
pars <- c(mu1 = 5.0, mu2 = 9.0, nu1 = 30.0, nu2 = 150.0,
sigma1 = 0.01, sigma2 = 0.05)
c.sim <- sim.cppm("TypeC", pars, seed = 555)
## estimation
init.pars <- c(mu1 = 10.0, mu2 = 10.0, nu1 = 30.0, nu2 = 120.0,
sigma1 = 0.03, sigma2 = 0.03)
c.mple <- mple.cppm("TypeC", c.sim$offspring$xy, init.pars)
coef(c.mple)
## End(Not run)