eblupNSFH1 {NSAE}R Documentation

EBLUP under nonstationary Fay-Herriot model for sample area

Description

This function gives the EBLUP and the estimate of mean squared error (mse) based on a nonstationary Fay-Herriot model for sample area.

Usage

eblupNSFH1(
  formula,
  vardir,
  lat,
  long,
  method = "REML",
  MAXITER,
  PRECISION,
  data
)

Arguments

formula

an object of class list of formula, describe the model to be fitted

vardir

a vector of sampling variances of direct estimators for each small area

lat

a vector of latitude for each small area

long

a vector of longitude for each small area

method

type of fitting method, default is "REML" methods

MAXITER

number of iterations allowed in the algorithm. Default is 100 iterations

PRECISION

convergence tolerance limit for the Fisher-scoring algorithm. Default value is 1e-04

data

a data frame comprising the variables named in formula, vardir, lat and long

Value

The function returns a list with the following objects:

eblup

a vector with the values of the estimators for each small area

mse

a vector of the mean squared error estimates for each small area

sample

a matrix consist of area code, eblup, mse, SE and CV

fit

a list containing the following objects:

Examples

# Load data set
data(paddysample)
# Fit nonstationary Fay-Herriot model using sample part of paddy data
result <- eblupNSFH1(y ~ x1+x2, var, latitude, longitude, "REML", 100, 1e-04,paddysample)
result

[Package NSAE version 0.4.0 Index]