| evalClustLoss {NPflow} | R Documentation | 
ELoss of a partition point estimate compared to a gold standard
Description
Evaluate the loss of a point estimate of the partition compared to a gold standard according to a given loss function
Usage
evalClustLoss(c, gs, lossFn = "F-measure", a = 1, b = 1)
Arguments
c | 
 vector of length   | 
gs | 
 vector of length   | 
lossFn | 
 character string specifying the loss function to be used. Either "F-measure" or "Binder" (see Details). Default is "F-measure".  | 
a | 
 only relevant if   | 
b | 
 only relevant if   | 
Details
The cost of a point estimate partition is calculated using either a pairwise coincidence loss function (Binder), or 1-Fmeasure (F-measure).
Value
the cost of the point estimate c in regard of the
gold standard gs for a given loss function.
Author(s)
Boris Hejblum
References
J.W. Lau & P.J. Green. Bayesian Model-Based Clustering Procedures, Journal of Computational and Graphical Statistics, 16(3): 526-558, 2007.
D. B. Dahl. Model-Based Clustering for Expression Data via a Dirichlet Process Mixture Model, in Bayesian Inference for Gene Expression and Proteomics, K.-A. Do, P. Muller, M. Vannucci (Eds.), Cambridge University Press, 2006.
See Also
similarityMat, cluster_est_binder