MLE_sNiW {NPflow} | R Documentation |
MLE for sNiW distributed observations
Description
Maximum likelihood estimation of Normal inverse Wishart distributed observations
Usage
MLE_sNiW(xi_list, psi_list, S_list, doPlot = TRUE)
Arguments
xi_list |
a list of length |
psi_list |
a list of length |
S_list |
a list of length |
doPlot |
a logical flag indicating whether the algorithm progression should be plotted.
Default is |
Author(s)
Boris Hejblum, Chariff Alkhassim
Examples
hyperG0 <- list()
hyperG0$b_xi <- c(0.3, -1.5)
hyperG0$b_psi <- c(0, 0)
hyperG0$kappa <- 0.001
hyperG0$D_xi <- 100
hyperG0$D_psi <- 100
hyperG0$nu <- 35
hyperG0$lambda <- diag(c(0.25,0.35))
xi_list <- list()
psi_list <- list()
S_list <- list()
for(k in 1:1000){
NNiW <- rNNiW(hyperG0, diagVar=FALSE)
xi_list[[k]] <- NNiW[["xi"]]
psi_list[[k]] <- NNiW[["psi"]]
S_list[[k]] <- NNiW[["S"]]
}
mle <- MLE_sNiW(xi_list, psi_list, S_list)
mle
[Package NPflow version 0.13.5 Index]