MAP_sNiW_mmEM {NPflow} | R Documentation |
EM MAP for mixture of sNiW
Description
Maximum A Posteriori (MAP) estimation of mixture of Normal inverse Wishart distributed observations with an EM algorithm
Usage
MAP_sNiW_mmEM(
xi_list,
psi_list,
S_list,
hyperG0,
init = NULL,
K,
maxit = 100,
tol = 0.1,
doPlot = TRUE,
verbose = TRUE
)
MAP_sNiW_mmEM_weighted(
xi_list,
psi_list,
S_list,
obsweight_list,
hyperG0,
K,
maxit = 100,
tol = 0.1,
doPlot = TRUE,
verbose = TRUE
)
MAP_sNiW_mmEM_vague(
xi_list,
psi_list,
S_list,
hyperG0,
K = 10,
maxit = 100,
tol = 0.1,
doPlot = TRUE,
verbose = TRUE
)
Arguments
xi_list |
a list of length |
psi_list |
a list of length |
S_list |
a list of length |
hyperG0 |
prior mixing distribution used if |
init |
a list for initializing the algorithm with the following elements: |
K |
integer giving the number of mixture components. |
maxit |
integer giving the maximum number of iteration for the EM algorithm.
Default is |
tol |
real number giving the tolerance for the stopping of the EM algorithm.
Default is |
doPlot |
a logical flag indicating whether the algorithm progression should be plotted.
Default is |
verbose |
logical flag indicating whether plot should be drawn. Default is |
obsweight_list |
a list of length |
Details
MAP_sNiW_mmEM
provides an estimation for the MAP of mixtures of
Normal inverse Wishart distributed observations. MAP_sNiW_mmEM_vague
provides
an estimates incorporating a vague component in the mixture.
MAP_sNiW_mmEM_weighted
provides a weighted version of the algorithm.
Author(s)
Boris Hejblum, Chariff Alkhassim
Examples
set.seed(1234)
hyperG0 <- list()
hyperG0$b_xi <- c(0.3, -1.5)
hyperG0$b_psi <- c(0, 0)
hyperG0$kappa <- 0.001
hyperG0$D_xi <- 100
hyperG0$D_psi <- 100
hyperG0$nu <- 20
hyperG0$lambda <- diag(c(0.25,0.35))
hyperG0 <- list()
hyperG0$b_xi <- c(1, -1.5)
hyperG0$b_psi <- c(0, 0)
hyperG0$kappa <- 0.1
hyperG0$D_xi <- 1
hyperG0$D_psi <- 1
hyperG0$nu <- 2
hyperG0$lambda <- diag(c(0.25,0.35))
xi_list <- list()
psi_list <- list()
S_list <- list()
w_list <- list()
for(k in 1:200){
NNiW <- rNNiW(hyperG0, diagVar=FALSE)
xi_list[[k]] <- NNiW[["xi"]]
psi_list[[k]] <- NNiW[["psi"]]
S_list[[k]] <- NNiW[["S"]]
w_list [[k]] <- 0.75
}
hyperG02 <- list()
hyperG02$b_xi <- c(-1, 2)
hyperG02$b_psi <- c(-0.1, 0.5)
hyperG02$kappa <- 0.1
hyperG02$D_xi <- 1
hyperG02$D_psi <- 1
hyperG02$nu <- 4
hyperG02$lambda <- 0.5*diag(2)
for(k in 201:400){
NNiW <- rNNiW(hyperG02, diagVar=FALSE)
xi_list[[k]] <- NNiW[["xi"]]
psi_list[[k]] <- NNiW[["psi"]]
S_list[[k]] <- NNiW[["S"]]
w_list [[k]] <- 0.25
}
map <- MAP_sNiW_mmEM(xi_list, psi_list, S_list, hyperG0, K=2, tol=0.1)