stepwise.PIC {NPRED} | R Documentation |
Calculate stepwise PIC
Description
Calculate stepwise PIC
Usage
stepwise.PIC(x, py, nvarmax = 100, alpha = 0.1)
Arguments
x |
A vector of response. |
py |
A matrix containing possible predictors of x. |
nvarmax |
The maximum number of variables to be selected. |
alpha |
The significance level used to judge whether the sample estimate in Equation
is significant or not. A default alpha value is 0.1. |
Value
A list of 2 elements: the column numbers of the meaningful predictors (cpy), and partial informational correlation (cpyPIC).
References
Sharma, A., Mehrotra, R., 2014. An information theoretic alternative to model a natural system using observational information alone. Water Resources Research, 50(1): 650-660.
Examples
data(data1) # AR9 model x(i)=0.3*x(i-1)-0.6*x(i-4)-0.5*x(i-9)+eps
x <- data1[, 1] # response
py <- data1[, -1] # possible predictors
stepwise.PIC(x, py)
data(data2) # AR4 model: x(i)=0.6*x(i-1)-0.4*x(i-4)+eps
x <- data2[, 1] # response
py <- data2[, -1] # possible predictors
stepwise.PIC(x, py)
data(data3) # AR1 model x(i)=0.9*x(i-1)+0.866*eps
x <- data3[, 1] # response
py <- data3[, -1] # possible predictors
stepwise.PIC(x, py)
[Package NPRED version 1.1.0 Index]