PoissonNPP_MCMC {NPP} | R Documentation |
MCMC Sampling for Bernoulli Population using Normalized Power Prior
Description
Conduct posterior sampling for Poisson population with normalized power prior.
For the power parameter \delta
, a Metropolis-Hastings algorithm with either
independence proposal, or a random walk proposal on its logit scale is used.
For the model parameter \lambda
, Gibbs sampling is used.
Usage
PoissonNPP_MCMC(Data.Cur, Data.Hist,
CompStat = list(n0 = NULL, mean0 = NULL, n1 = NULL, mean1 = NULL),
prior = list(lambda.shape = 1/2, lambda.scale = 100,
delta.alpha = 1, delta.beta = 1),
MCMCmethod = 'IND', rw.logit.delta = 0.1,
ind.delta.alpha= 1, ind.delta.beta= 1, nsample = 5000,
control.mcmc = list(delta.ini = NULL, burnin = 0, thin = 1))
Arguments
Data.Cur |
a non-negative integer vector of each observed current data. |
Data.Hist |
a non-negative integer vector of each observed historical data. |
CompStat |
a list of four elements that represents the
"compatibility(sufficient) statistics" for
|
prior |
a list of the hyperparameters in the prior for both
|
MCMCmethod |
sampling method for |
rw.logit.delta |
the stepsize(variance of the normal distribution) for the random walk proposal of logit |
ind.delta.alpha |
specifies the first parameter |
ind.delta.beta |
specifies the first parameter |
nsample |
specifies the number of posterior samples in the output. |
control.mcmc |
a list of three elements used in posterior sampling.
|
Details
The outputs include posteriors of the model parameter(s) and power parameter, acceptance rate in sampling \delta
, and
the deviance information criteria.
Value
A list of class "NPP" with four elements:
lambda |
posterior of the model parameter |
delta |
posterior of the power parameter |
acceptance |
the acceptance rate in MCMC sampling for |
DIC |
the deviance information criteria for model diagnostics. |
Author(s)
Zifei Han hanzifei1@gmail.com
References
Ibrahim, J.G., Chen, M.-H., Gwon, Y. and Chen, F. (2015). The Power Prior: Theory and Applications. Statistics in Medicine 34:3724-3749.
Duan, Y., Ye, K. and Smith, E.P. (2006). Evaluating Water Quality: Using Power Priors to Incorporate Historical Information. Environmetrics 17:95-106.
See Also
MultinomialNPP_MCMC
;
NormalNPP_MCMC
;
BerNPP_MCMC
;
Examples
set.seed(1234)
DataHist <- rpois(n = 100, lambda = 49)
set.seed(12345)
DataCur <- rpois(n = 100, lambda = 49)
PoissonNPP_MCMC(Data.Cur = DataCur, Data.Hist = DataHist,
CompStat = list(n0 = 20, mean0 = 10, n1 = 30, mean1 = 11),
prior = list(lambda.shape = 1/2, lambda.scale = 100,
delta.alpha = 1, delta.beta = 1),
MCMCmethod = 'RW', rw.logit.delta = 1,
ind.delta.alpha= 1, ind.delta.beta= 1,nsample = 10000,
control.mcmc = list(delta.ini = NULL, burnin = 2000, thin = 1))