NormalNPP_MCMC {NPP} | R Documentation |
MCMC Sampling for Normal Population using Normalized Power Prior
Description
Conduct posterior sampling for normal population with normalized power prior.
The initial prior \pi(\mu|\sigma^2)
is a flat prior.
For the power parameter \delta
, a Metropolis-Hastings algorithm with either
independence proposal, or a random walk proposal on its logit scale is used.
For the model parameter \mu
and \sigma^2
, Gibbs sampling is used.
Usage
NormalNPP_MCMC(Data.Cur, Data.Hist,
CompStat = list(n0 = NULL, mean0 = NULL, var0 = NULL,
n1 = NULL, mean1 = NULL, var1 = NULL),
prior = list(a = 1.5, delta.alpha = 1, delta.beta = 1),
MCMCmethod = 'IND', rw.logit.delta = 0.1,
ind.delta.alpha= 1, ind.delta.beta= 1, nsample = 5000,
control.mcmc = list(delta.ini = NULL, burnin = 0, thin = 1))
Arguments
Data.Cur |
a vector of individual level current data. |
Data.Hist |
a vector of individual level historical data. |
CompStat |
a list of six elements(scalar) that represents the
"compatibility(sufficient) statistics" for model parameters.
Default is
|
prior |
a list of the hyperparameters in the prior for both
|
MCMCmethod |
sampling method for |
rw.logit.delta |
the stepsize(variance of the normal distribution) for the random walk proposal of logit |
ind.delta.alpha |
specifies the first parameter |
ind.delta.beta |
specifies the first parameter |
nsample |
specifies the number of posterior samples in the output. |
control.mcmc |
a list of three elements used in posterior sampling.
|
Details
The outputs include posteriors of the model parameter(s) and power parameter, acceptance rate in sampling \delta
, and
the deviance information criteria.
Value
A list of class "NPP" with five elements:
mu |
posterior of the model parameter |
sigmasq |
posterior of the model parameter |
delta |
posterior of the power parameter |
acceptance |
the acceptance rate in MCMC sampling for |
DIC |
the deviance information criteria for model diagnostics. |
Author(s)
Zifei Han hanzifei1@gmail.com
References
Ibrahim, J.G., Chen, M.-H., Gwon, Y. and Chen, F. (2015). The Power Prior: Theory and Applications. Statistics in Medicine 34:3724-3749.
Duan, Y., Ye, K. and Smith, E.P. (2006). Evaluating Water Quality: Using Power Priors to Incorporate Historical Information. Environmetrics 17:95-106.
Berger, J.O. and Bernardo, J.M. (1992). On the development of reference priors. Bayesian Statistics 4: Proceedings of the Fourth Valencia International Meeting, Bernardo, J.M, Berger, J.O., Dawid, A.P. and Smith, A.F.M. eds., 35-60, Clarendon Press:Oxford.
Jeffreys, H. (1946). An Invariant Form for the Prior Probability in Estimation Problems. Proceedings of the Royal Statistical Society of London, Series A 186:453-461.
See Also
BerNPP_MCMC
;
MultinomialNPP_MCMC
;
PoissonNPP_MCMC
;
Examples
set.seed(1234)
NormalData0 <- rnorm(n = 100, mean= 20, sd = 1)
set.seed(12345)
NormalData1 <- rnorm(n = 50, mean= 30, sd = 1)
NormalNPP_MCMC(Data.Cur = NormalData1, Data.Hist = NormalData0,
CompStat = list(n0 = 100, mean0 = 10, var0 = 1,
n1 = 100, mean1 = 10, var1 = 1),
prior = list(a = 1.5, delta.alpha = 1, delta.beta = 1),
MCMCmethod = 'RW', rw.logit.delta = 1,
ind.delta.alpha= 1, ind.delta.beta= 1, nsample = 10000,
control.mcmc = list(delta.ini = NULL, burnin = 0, thin = 1))