LMOMNPP_MCMC1 {NPP} | R Documentation |
MCMC Sampling for Linear Regression Model of multiple historical data using Ordered Normalized Power Prior
Description
Multiple historical data are incorporated together.
Conduct posterior sampling for Linear Regression Model with ordered normalized power prior.
For the power parameter \gamma
, a Metropolis-Hastings algorithm with
independence proposal is used.
For the model parameters (\beta, \sigma^2)
, Gibbs sampling is used.
Usage
LMOMNPP_MCMC1(D0, X, Y, a0, b, mu0, R, gamma_ini, prior_gamma,
gamma_ind_prop, nsample, burnin, thin, adjust)
Arguments
D0 |
a list of |
X |
a vector or matrix or data frame of covariate observed in the current data. If more than 1 covariate available, the number of rows is equal to the number of observations. |
Y |
a vector of individual level of the response y in the current data. |
a0 |
a positive shape parameter for inverse-gamma prior on model parameter |
b |
a positive scale parameter for inverse-gamma prior on model parameter |
mu0 |
a vector of the mean for prior |
R |
a inverse matrix of the covariance matrix for prior |
gamma_ini |
the initial value of |
prior_gamma |
a vector of the hyperparameters in the prior distribution
|
gamma_ind_prop |
a vector of the hyperparameters in the proposal distribution |
nsample |
specifies the number of posterior samples in the output. |
burnin |
the number of burn-ins. The output will only show MCMC samples after bunrin. |
thin |
the thinning parameter in MCMC sampling. |
adjust |
Whether or not to adjust the parameters of the proposal distribution. |
Details
The outputs include posteriors of the model parameters and power parameter,
acceptance rate in sampling \gamma
.
Let \theta
=(\beta, \sigma^2)
, the normalized power prior distribution is
\frac{\pi_0(\gamma)\pi_0(\theta)\prod_{k=1}^{K}L(\theta|D_{0k})^(\sum_{i=1}^{k}\gamma_i)}{\int \pi_0(\theta)\prod_{k=1}^{K}L(\theta|D_{0k})^(\sum_{i=1}^{k}\gamma_i)\,d\theta}.
Here \pi_0(\gamma)
and \pi_0(\theta)
are the initial prior distributions of \gamma
and \theta
, respectively. L(\theta|D_{0k})
is the likelihood function of historical data D_{0k}
, and \sum_{i=1}^{k}\gamma_i
is the corresponding power parameter.
Value
A list of class "NPP" with four elements:
acceptrate |
the acceptance rate in MCMC sampling for |
beta |
posterior of the model parameter |
sigma |
posterior of the model parameter |
delta |
posterior of the power parameter |
Author(s)
Qiang Zhang zqzjf0408@163.com
References
Ibrahim, J.G., Chen, M.-H., Gwon, Y. and Chen, F. (2015). The Power Prior: Theory and Applications. Statistics in Medicine 34:3724-3749.
Duan, Y., Ye, K. and Smith, E.P. (2006). Evaluating Water Quality: Using Power Priors to Incorporate Historical Information. Environmetrics 17:95-106.
See Also
LMMNPP_MCMC1
;
LMMNPP_MCMC2
;
LMOMNPP_MCMC2
Examples
## Not run:
set.seed(1234)
sigsq0 = 1
n01 = 100
theta01 = c(0, 1, 1)
X01 = cbind(1, rnorm(n01, mean=0, sd=1), runif(n01, min=-1, max=1))
Y01 = X01%*%as.vector(theta01) + rnorm(n01, mean=0, sd=sqrt(sigsq0))
D01 = cbind(X01, Y01)
n02 = 70
theta02 = c(0, 2, 3)
X02 = cbind(1, rnorm(n02, mean=0, sd=1), runif(n02, min=-1, max=1))
Y02 = X02%*%as.vector(theta02) + rnorm(n02, mean=0, sd=sqrt(sigsq0))
D02 = cbind(X02, Y02)
n03 = 50
theta03 = c(0, 3, 5)
X03 = cbind(1, rnorm(n03, mean=0, sd=1), runif(n03, min=-1, max=1))
Y03 = X03%*%as.vector(theta03) + rnorm(n03, mean=0, sd=sqrt(sigsq0))
D03 = cbind(X03, Y03)
D0 = list(D01, D02, D03)
n0 = c(n01, n02, n03)
n = 100
theta = c(0, 3, 5)
X = cbind(1, rnorm(n, mean=0, sd=1), runif(n, min=-1, max=1))
Y = X%*%as.vector(theta) + rnorm(n, mean=0, sd=sqrt(sigsq0))
LMOMNPP_MCMC1(D0=D0, X=X, Y=Y, a0=2, b=2, mu0=c(0,0,0), R=diag(c(1/64,1/64,1/64)),
gamma_ini=NULL, prior_gamma=rep(1/4,4), gamma_ind_prop=rep(1/4,4),
nsample=5000, burnin=1000, thin=5, adjust=FALSE)
## End(Not run)