| LMNPP_MCMC {NPP} | R Documentation | 
MCMC Sampling for Normal Linear Model using Normalized Power Prior
Description
Conduct posterior sampling for normal linear model with normalized power prior.
For the power parameter \delta, a Metropolis-Hastings algorithm with either
independence proposal, or a random walk proposal on its logit scale is used.
For the regression parameter \beta and \sigma^2, Gibbs sampling is used.
Usage
LMNPP_MCMC(y.Cur, y.Hist, x.Cur = NULL, x.Hist = NULL,
           prior = list(a = 1.5, b = 0, mu0 = 0,
                   Rinv = matrix(1, nrow = 1), delta.alpha = 1, delta.beta = 1),
           MCMCmethod = 'IND', rw.logit.delta = 0.1,
           ind.delta.alpha= 1, ind.delta.beta= 1, nsample = 5000,
           control.mcmc = list(delta.ini = NULL, burnin = 0, thin = 1))
Arguments
y.Cur | 
 a vector of individual level of the response y in current data.  | 
y.Hist | 
 a vector of individual level of the response y in historical data.  | 
x.Cur | 
 a vector or matrix or data frame of covariate observed in the current data. If more than 1 covariate available, the number of rows is equal to the number of observations.  | 
x.Hist | 
 a vector or matrix or data frame of covariate observed in the historical data. If more than 1 covariate available, the number of rows is equal to the number of observations.  | 
prior | 
 a list of the hyperparameters in the prior for model parameters
 
 
 
 
 
 
  | 
MCMCmethod | 
 sampling method for   | 
rw.logit.delta | 
 the stepsize(variance of the normal distribution) for the random walk proposal of logit   | 
ind.delta.alpha | 
 specifies the first parameter   | 
ind.delta.beta | 
 specifies the first parameter   | 
nsample | 
 specifies the number of posterior samples in the output.  | 
control.mcmc | 
 a list of three elements used in posterior sampling. 
 
 
  | 
Details
If b = 1, prior for (\beta, \sigma) is (1/\sigma^2)^a * N(mu0, \sigma^2 R^{-1}), which includes the g-prior.
If b = 0, prior for (\beta, \sigma) is (1/\sigma^2)^a.
The outputs include posteriors of the model parameter(s) and power parameter, acceptance rate when sampling \delta, and
the deviance information criteria.
Value
A list of class "NPP" with five elements:
beta | 
 posterior of the model parameter   | 
sigmasq | 
 posterior of the model parameter   | 
delta | 
 posterior of the power parameter   | 
acceptance | 
 the acceptance rate in MCMC sampling for   | 
DIC | 
 the deviance information criteria for model diagnostics.  | 
Author(s)
Zifei Han hanzifei1@gmail.com
References
Ibrahim, J.G., Chen, M.-H., Gwon, Y. and Chen, F. (2015). The Power Prior: Theory and Applications. Statistics in Medicine 34:3724-3749.
Duan, Y., Ye, K. and Smith, E.P. (2006). Evaluating Water Quality: Using Power Priors to Incorporate Historical Information. Environmetrics 17:95-106.
Berger, J.O. and Bernardo, J.M. (1992). On the development of reference priors. Bayesian Statistics 4: Proceedings of the Fourth Valencia International Meeting, Bernardo, J.M, Berger, J.O., Dawid, A.P. and Smith, A.F.M. eds., 35-60, Clarendon Press:Oxford.
Jeffreys, H. (1946). An Invariant Form for the Prior Probability in Estimation Problems. Proceedings of the Royal Statistical Society of London, Series A 186:453-461.
See Also
BerNPP_MCMC;
MultinomialNPP_MCMC;
PoissonNPP_MCMC;
NormalNPP_MCMC
Examples
set.seed(123)
x1 = runif(100, min = 0, max = 10)
x0 = runif(100, min = 0, max = 1)
y1 = 10+ 2*x1 + rnorm(100, mean = 0, sd = 1)
y0 = 10+ 1.5*x0 + rnorm(100, mean = 0, sd = 1)
RegPost = LMNPP_MCMC(y.Cur = y1, y.Hist = y0, x.Cur = x1, x.Hist = x0,
                     prior = list(a = 1.5, b = 0, mu0 = c(0, 0),
                                  Rinv = diag(100, nrow = 2),
                     delta.alpha = 1, delta.beta = 1), MCMCmethod = 'IND',
                     ind.delta.alpha= 1, ind.delta.beta= 1, nsample = 5000,
                     control.mcmc = list(delta.ini = NULL,
                                         burnin = 2000, thin = 2))