LMNPP_MCMC {NPP} | R Documentation |
MCMC Sampling for Normal Linear Model using Normalized Power Prior
Description
Conduct posterior sampling for normal linear model with normalized power prior.
For the power parameter \delta
, a Metropolis-Hastings algorithm with either
independence proposal, or a random walk proposal on its logit scale is used.
For the regression parameter \beta
and \sigma^2
, Gibbs sampling is used.
Usage
LMNPP_MCMC(y.Cur, y.Hist, x.Cur = NULL, x.Hist = NULL,
prior = list(a = 1.5, b = 0, mu0 = 0,
Rinv = matrix(1, nrow = 1), delta.alpha = 1, delta.beta = 1),
MCMCmethod = 'IND', rw.logit.delta = 0.1,
ind.delta.alpha= 1, ind.delta.beta= 1, nsample = 5000,
control.mcmc = list(delta.ini = NULL, burnin = 0, thin = 1))
Arguments
y.Cur |
a vector of individual level of the response y in current data. |
y.Hist |
a vector of individual level of the response y in historical data. |
x.Cur |
a vector or matrix or data frame of covariate observed in the current data. If more than 1 covariate available, the number of rows is equal to the number of observations. |
x.Hist |
a vector or matrix or data frame of covariate observed in the historical data. If more than 1 covariate available, the number of rows is equal to the number of observations. |
prior |
a list of the hyperparameters in the prior for model parameters
|
MCMCmethod |
sampling method for |
rw.logit.delta |
the stepsize(variance of the normal distribution) for the random walk proposal of logit |
ind.delta.alpha |
specifies the first parameter |
ind.delta.beta |
specifies the first parameter |
nsample |
specifies the number of posterior samples in the output. |
control.mcmc |
a list of three elements used in posterior sampling.
|
Details
If b = 1
, prior for (\beta, \sigma)
is (1/\sigma^2)^a * N(mu0, \sigma^2 R^{-1})
, which includes the g-prior.
If b = 0
, prior for (\beta, \sigma)
is (1/\sigma^2)^a
.
The outputs include posteriors of the model parameter(s) and power parameter, acceptance rate when sampling \delta
, and
the deviance information criteria.
Value
A list of class "NPP" with five elements:
beta |
posterior of the model parameter |
sigmasq |
posterior of the model parameter |
delta |
posterior of the power parameter |
acceptance |
the acceptance rate in MCMC sampling for |
DIC |
the deviance information criteria for model diagnostics. |
Author(s)
Zifei Han hanzifei1@gmail.com
References
Ibrahim, J.G., Chen, M.-H., Gwon, Y. and Chen, F. (2015). The Power Prior: Theory and Applications. Statistics in Medicine 34:3724-3749.
Duan, Y., Ye, K. and Smith, E.P. (2006). Evaluating Water Quality: Using Power Priors to Incorporate Historical Information. Environmetrics 17:95-106.
Berger, J.O. and Bernardo, J.M. (1992). On the development of reference priors. Bayesian Statistics 4: Proceedings of the Fourth Valencia International Meeting, Bernardo, J.M, Berger, J.O., Dawid, A.P. and Smith, A.F.M. eds., 35-60, Clarendon Press:Oxford.
Jeffreys, H. (1946). An Invariant Form for the Prior Probability in Estimation Problems. Proceedings of the Royal Statistical Society of London, Series A 186:453-461.
See Also
BerNPP_MCMC
;
MultinomialNPP_MCMC
;
PoissonNPP_MCMC
;
NormalNPP_MCMC
Examples
set.seed(123)
x1 = runif(100, min = 0, max = 10)
x0 = runif(100, min = 0, max = 1)
y1 = 10+ 2*x1 + rnorm(100, mean = 0, sd = 1)
y0 = 10+ 1.5*x0 + rnorm(100, mean = 0, sd = 1)
RegPost = LMNPP_MCMC(y.Cur = y1, y.Hist = y0, x.Cur = x1, x.Hist = x0,
prior = list(a = 1.5, b = 0, mu0 = c(0, 0),
Rinv = diag(100, nrow = 2),
delta.alpha = 1, delta.beta = 1), MCMCmethod = 'IND',
ind.delta.alpha= 1, ind.delta.beta= 1, nsample = 5000,
control.mcmc = list(delta.ini = NULL,
burnin = 2000, thin = 2))