BerNPP_MCMC {NPP} | R Documentation |
MCMC Sampling for Bernoulli Population using Normalized Power Prior
Description
Conduct posterior sampling for Bernoulli population with normalized power prior.
For the power parameter \delta
, a Metropolis-Hastings algorithm with either
independence proposal, or a random walk proposal on its logit scale is used.
For the model parameter p
, Gibbs sampling is used.
Usage
BerNPP_MCMC(Data.Cur = c(100, 50), Data.Hist = c(100, 50),
CompStat = list(n0 = NULL, y0 = NULL, n1 = NULL, y1 = NULL),
prior = list(p.alpha = 1, p.beta = 1, delta.alpha = 1, delta.beta = 1),
MCMCmethod = 'IND', rw.logit.delta = 0.1,
ind.delta.alpha = 1, ind.delta.beta = 1, nsample = 5000,
control.mcmc = list(delta.ini = NULL, burnin = 0, thin = 1))
Arguments
Data.Cur |
a non-negative integer vector of two elements: c(number of trials, number of successes) in the current data. |
Data.Hist |
a non-negative integer vector of two elements: c(number of trials, number of successes) in the historical data. |
CompStat |
a list of four elements that represents the
"compatibility(sufficient) statistics" for
|
prior |
a list of the hyperparameters in the prior for both
|
MCMCmethod |
sampling method for |
rw.logit.delta |
the stepsize(variance of the normal distribution) for the random walk proposal of logit |
ind.delta.alpha |
specifies the first parameter |
ind.delta.beta |
specifies the first parameter |
nsample |
specifies the number of posterior samples in the output. |
control.mcmc |
a list of three elements used in posterior sampling.
|
Details
The outputs include posteriors of the model parameter(s) and power parameter, acceptance rate in sampling \delta
, and
the deviance information criteria.
Value
A list of class "NPP" with four elements:
p |
posterior of the model parameter |
delta |
posterior of the power parameter |
acceptance |
the acceptance rate in MCMC sampling for |
DIC |
the deviance information criteria for model diagnostics. |
Author(s)
Zifei Han hanzifei1@gmail.com
References
Ibrahim, J.G., Chen, M.-H., Gwon, Y. and Chen, F. (2015). The Power Prior: Theory and Applications. Statistics in Medicine 34:3724-3749.
Duan, Y., Ye, K. and Smith, E.P. (2006). Evaluating Water Quality: Using Power Priors to Incorporate Historical Information. Environmetrics 17:95-106.
See Also
MultinomialNPP_MCMC
;
NormalNPP_MCMC
;
PoissonNPP_MCMC
Examples
BerNPP_MCMC(Data.Cur = c(493, 473), Data.Hist = c(680, 669),
prior = list(p.alpha = 0.5, p.beta = 0.5, delta.alpha = 1, delta.beta = 1),
MCMCmethod = 'RW', rw.logit.delta = 1, nsample = 5000,
control.mcmc = list(delta.ini = NULL, burnin = 2000, thin = 5))