mle_parameters {NORMA} | R Documentation |
MLE Parameters
Description
mle_parameters
computes the optimal parameters via MLE of
a given distribution.
zero_laplace_mle
computes the optimal parameters via MLE
assuming a zero-mean Laplace as noise distribution.
general_laplace_mle
computes the optimal parameters via MLE
assuming a general Laplace as noise distribution.
zero_gaussian_mle
computes the optimal parameters via MLE
assuming a zero-mean Gaussian as noise distribution.
general_gaussian_mle
computes the optimal parameters via MLE
assuming a general Gaussian as noise distribution.
beta_mle
computes the optimal parameters via MLE
assuming a Beta as noise distribution.
weibull_mle
computes the optimal parameters via MLE
assuming a Weibull as noise distribution.
moge_mle
computes the optimal parameters via MLE
assuming a MOGE as noise distribution.
Usage
mle_parameters(phi, dist = "nm", ...)
zero_laplace_mle(phi)
general_laplace_mle(phi)
zero_gaussian_mle(phi)
general_gaussian_mle(phi)
beta_mle(phi, m1 = mean(phi, na.rm = T), m2 = mean(phi^2, na.rm = T),
alpha_0 = (m1 * (m1 - m2))/(m2 - m1^2), beta_0 = (alpha_0 * (1 - m1)/m1))
weibull_mle(phi, k_0 = 1)
moge_mle(phi, lambda_0 = 1, alpha_0 = 1, theta_0 = 1)
Arguments
phi |
a vector with residual values used to estimate the parameters. |
dist |
assumed distribution for the noise in the data. Possible values to take:
|
... |
additional arguments to be passed to the low level functions (see below). |
m1 |
first moment of the residuals. Used to compute |
m2 |
second moment of the residuals. Used to compute |
alpha_0 |
initial value for Newton-Raphson method for the parameter |
beta_0 |
initial value for Newton-Raphson method for the parameter |
k_0 |
initial value for Newton-Raphson method for the parameter |
lambda_0 |
initial value for Newton-Raphson method for the parameter |
theta_0 |
initial value for Newton-Raphson method for the parameter See also 'Details' and multiroot. |
Details
For the zero-\mu
Laplace distribution the optimal MLE parameters are
\sigma=mean(|\phi_i|)
, where {\phi_i}
are the residuals passed as argument.
For the general Laplace distribution the optimal MLE parameters are
\mu=median(\phi_i)
\sigma=mean(|\phi_i - \mu|)
, where {\phi_i}
are the residuals passed as argument.
For the zero-\mu
Gaussian distribution the optimal MLE parameters are
\sigma^2=mean(\phi_i^2)
, where {\phi_i}
are the residuals passed as argument.
For the general Gaussian distribution the optimal MLE parameters are
\mu=mean(\phi_i)
\sigma^2=mean((\phi_i-\mu)^2)
, where {\phi_i}
are the residuals passed as argument.
For the Beta distribution values of parameters \alpha
and
\beta
are estimated using Newton-Raphson method.
For the Weibull distribution value of parameter \kappa
is estimated using Newton-Raphson method
and then estimated value of \lambda
is computed using the following closed form that depends on \kappa
:
\lambda=mean(\phi_i^kappa)^(1/\kappa)
For the MOGE distribution values of parameters \lambda
, \alpha
and
\theta
are estimated using Newton-Raphson method.
See also 'References'.
Value
mle_parameters
returns a list with the estimated parameters. Depending on the distribution
these parameters will be one or more of the following ones:
- sigma
scale parameter of the Laplace distribution.
- mu
location or mean parameter of the Laplace or Gaussian distribution, respectively.
- sigma_cuad
variance parameter of the Gaussian distribution.
- alpha
shape1 parameter of the Beta distribution or second parameter of the MOGE distribution.
- beta
shape2 parameter of the Beta distribution.
- k
shape parameter of the Weibull distribution.
- lambda
lambda scale parameter of the Weibull distribution or first parameter of the MOGE distribution.
- theta
third parameter of the MOGE distribution.
Author(s)
Jesus Prada, jesus.prada@estudiante.uam.es
References
Link to the scientific paper
Prada, Jesus, and Jose Ramon Dorronsoro. "SVRs and Uncertainty Estimates in Wind Energy Prediction." Advances in Computational Intelligence. Springer International Publishing, 2015. 564-577,
with theoretical background for this package is provided below.
http://link.springer.com/chapter/10.1007/978-3-319-19222-2_47
Examples
# Estimate optimal parameters using default distribution ("nm").
mle_parameters(rnorm(100))
# Estimate optimal parameters using "lm" distribution.
mle_parameters(rnorm(100),dist="lm")
# Equivalent to mle_parameters(rnorm(100),dist="l")
zero_laplace_mle(rnorm(100))
# Equivalent to mle_parameters(rnorm(100),dist="lm")
general_laplace_mle(rnorm(100))
# Equivalent to mle_parameters(rnorm(100),dist="n")
zero_gaussian_mle(rnorm(100))
# Equivalent to mle_parameters(rnorm(100),dist="nm")
general_gaussian_mle(rnorm(100))
# Equivalent to mle_parameters(rnorm(100),dist="b")
beta_mle(rnorm(100))
# Equivalent to mle_parameters(rnorm(100),dist="w")
weibull_mle(rnorm(100))
# Equivalent to mle_parameters(rnorm(100),dist="moge")
moge_mle(rnorm(100))