f {NORMA} | R Documentation |
Predictor Function
Description
Computes the predictor function of a general noise SVR based on NORMA optimization.
Usage
f(point, t, x, alpha, beta, f_0, kernel = function(x, y, gamma) {
exp(-gamma * (norm(x - y, type = "2")^2)) }, gamma, no_beta)
Arguments
point |
|
t |
time parameter value indicating the iteration we want to consider. |
x |
|
alpha |
|
beta |
|
f_0 |
initial hypothesis. |
kernel |
kernel function to use. |
gamma |
gaussian kernel parameter |
no_beta |
|
Value
Returns a numeric
representing the prediction value.
Author(s)
Jesus Prada, jesus.prada@estudiante.uam.es
References
Link to the scientific paper
Kivinen J., Smola A. J., Williamson R.C.: Online learning with kernels. In: IEEE transactions on signal processing, vol. 52, pp. 2165-2176, IEEE (2004).
with theoretical background for NORMA optimization is provided below.
http://realm.sics.se/papers/KivSmoWil04(1).pdf
Examples
f(c(1,2,3),2,matrix(c(1,2,3,4,5,6),nrow=2,ncol=3,byrow=TRUE),
matrix(c(1,2,3,4,5,6),nrow=2,ncol=3,byrow=TRUE),
c(1,2),0,function(x,y,gamma=0){x%*%y},0.1,FALSE)