NORMA {NORMA} | R Documentation |
NORMA Optimization
Description
Computes general noise SVR based on NORMA optimization.
Usage
NORMA(x, y, f_0 = 0, beta_0 = 0, lambda = 0, rate = function(t) { 1
}, kernel = linear_kernel, cost_der = ILF_cost_der,
cost_name = "ILF_cost_der", gamma = 1, max_iterations = nrow(x),
stopping_threshold = 0, trace = TRUE, no_beta = TRUE,
fixed_epsilon = TRUE, ...)
Arguments
x |
|
y |
|
f_0 |
initial hypothesis. |
beta_0 |
initial value for offset |
lambda |
NORMA optimization parameter |
rate |
learning rate for NORMA optimization. Must be a function with one argument. |
kernel |
kernel function to use. Must be a function with three arguments such as |
cost_der |
Loss function derivative to use. See also ILF_cost_der. Must be "ILF_cost_der" when ILF derivative is used. |
cost_name |
|
gamma |
gaussian kernel parameter |
max_iterations |
maximum number of NORMA iterations computed. |
stopping_threshold |
value indicating when to stop NORMA optimization. See also 'Details'. |
trace |
|
no_beta |
|
fixed_epsilon |
|
... |
additional arguments to be passed to the low level functions. |
Details
Optimization will stop when the sum of the differences between all training predicted values of present
iteration versus values from previous iteration does not exceeds stopping_threshold
.
Value
Returns a list
containing:
- alpha
matrix
representing\alpha
parameters of NORMA optimization in each iteration, one per row.- beta
numeric
representing\beta
parameter of NORMA optimization in each iteration.- n_iterations
Number of NORMA iterations performed.
Author(s)
Jesus Prada, jesus.prada@estudiante.uam.es
References
Link to the scientific paper
Kivinen J., Smola A. J., Williamson R.C.: Online learning with kernels. In: IEEE transactions on signal processing, vol. 52, pp. 2165-2176, IEEE (2004).
with theoretical background for NORMA optimization is provided below.
http://realm.sics.se/papers/KivSmoWil04(1).pdf
Examples
NORMA(x=matrix(rnorm(10),nrow=10,ncol=1,byrow=TRUE),y=rnorm(10),kernel=function(x,y,gamma=0){x%*%y},
cost_der=function(phi,sigma_cuad,mu){return((phi-mu)/sigma_cuad)},cost_name="example",
sigma_cuad=1,mu=0)