ILF_cost_der {NORMA} | R Documentation |
Cost Functions Derivatives
Description
ILF_cost_der
computes the ILF derivative value at a given point.
zero_laplace_cost_der
computes the value at a given point of the loss function derivative
corresponding to a zero-mean Laplace distribution.
general_laplace_cost_der
computes the value at a given point of the loss function derivative
corresponding to a general Laplace distribution.
zero_gaussian_cost_der
computes the value at a given point of the loss function derivative
corresponding to a zero-mean Gaussian distribution.
general_gaussian_cost_der
computes the value at a given point of the loss function derivative
corresponding to a general Gaussian distribution.
beta_cost_der
computes the value at a given point of the loss function derivative
corresponding to a Beta distribution.
weibull_cost_der
computes the value at a given point of the loss function derivative
corresponding to a Weibull distribution.
moge_cost_der
computes the value at a given point of the loss function derivative
corresponding to a MOGE distribution.
Usage
ILF_cost_der(phi, epsilon = 0.1, nu = 0)
zero_laplace_cost_der(phi, sigma)
general_laplace_cost_der(phi, sigma, mu)
zero_gaussian_cost_der(phi, sigma_cuad)
general_gaussian_cost_der(phi, sigma_cuad, mu)
beta_cost_der(phi, alpha, beta)
weibull_cost_der(phi, lambda, kappa)
moge_cost_der(phi, lambda, alpha, theta)
Arguments
phi |
point to use as argument of the loss function derivative. |
epsilon |
width of the insensitive band. |
nu |
parameter to control value of |
sigma |
scale parameter of the Laplace distribution. |
mu |
location or mean parameter of the Laplace or Gaussian distribution, respectively. |
sigma_cuad |
variance parameter of the Gaussian distribution. |
alpha |
shape1 parameter of the Beta distribution or second parameter of the MOGE distribution. |
beta |
shape2 parameter of the Beta distribution. |
lambda |
lambda scale parameter of the Weibull distribution or first parameter of the MOGE distribution. |
kappa |
shape parameter of the Weibull distribution. |
theta |
third parameter of the MOGE distribution. |
Details
See also 'References'.
Value
Returns a numeric
representing the derivative value at a given point.
Author(s)
Jesus Prada, jesus.prada@estudiante.uam.es
References
Link to the scientific paper
Prada, Jesus, and Jose Ramon Dorronsoro. "SVRs and Uncertainty Estimates in Wind Energy Prediction." Advances in Computational Intelligence. Springer International Publishing, 2015. 564-577,
with theoretical background for this package is provided below.
http://link.springer.com/chapter/10.1007/978-3-319-19222-2_47
Examples
# ILF derivative value at point phi=1 with default epsilon.
ILF_cost_der(1)
# ILF derivative value at point phi=1 with epsilon=2.
ILF_cost_der(1,2)
# Zero-mean Laplace loss function derivative value at point phi=1 with sigma=1.
zero_laplace_cost_der(1,1)
# General Laplace loss function derivative value at point phi=1 with mu=0 and sigma=1.
general_laplace_cost_der(1,1,0)
# Zero-mean Gaussian loss function derivative value at point phi=1 with sigma_cuad=1.
zero_gaussian_cost_der(1,1)
# General Gaussian loss function derivative value at point phi=1 with mu=0 and sigma_cuad=1.
general_gaussian_cost_der(1,1,0)
# Beta loss function derivative value at point phi=1 with alpha=2 and beta=3.
beta_cost_der(1,2,3)
# Weibull loss function derivative value at point phi=1 with lambda=2 and kappa=3.
weibull_cost_der(1,2,3)
# MOGE loss function derivative value at point phi=1 with lambda=2 ,alpha=3 and theta=4.
moge_cost_der(1,2,3,4)