NNS.nowcast {NNS} | R Documentation |
NNS Nowcast
Description
Wrapper function for NNS nowcasting method using the nonparametric vector autoregression NNS.VAR, and Federal Reserve Nowcasting variables.
Usage
NNS.nowcast(
h = 1,
additional.regressors = NULL,
additional.sources = NULL,
naive.weights = FALSE,
specific.regressors = NULL,
start.date = "2000-01-03",
keep.data = FALSE,
status = TRUE,
ncores = NULL
)
Arguments
h |
integer; |
additional.regressors |
character; |
additional.sources |
character; |
naive.weights |
logical; |
specific.regressors |
integer; |
start.date |
character; |
keep.data |
logical; |
status |
logical; |
ncores |
integer; value specifying the number of cores to be used in the parallelized subroutine NNS.ARMA.optim. If NULL (default), the number of cores to be used is equal to the number of cores of the machine - 1. |
Value
Returns the following matrices of forecasted variables:
"interpolated_and_extrapolated"
Returns adata.frame
of the linear interpolated and NNS.ARMA extrapolated values to replaceNA
values in the originalvariables
argument. This is required for working with variables containing different frequencies, e.g. whereNA
would be reported for intra-quarterly data when indexed with monthly periods."relevant_variables"
Returns the relevant variables from the dimension reduction step."univariate"
Returns the univariate NNS.ARMA forecasts."multivariate"
Returns the multi-variate NNS.reg forecasts."ensemble"
Returns the ensemble of both"univariate"
and"multivariate"
forecasts.
Note
Specific regressors include:
-
PAYEMS
– Payroll Employment -
JTSJOL
– Job Openings -
CPIAUCSL
– Consumer Price Index -
DGORDER
– Durable Goods Orders -
RSAFS
– Retail Sales -
UNRATE
– Unemployment Rate -
HOUST
– Housing Starts -
INDPRO
– Industrial Production -
DSPIC96
– Personal Income -
BOPTEXP
– Exports -
BOPTIMP
– Imports -
TTLCONS
– Construction Spending -
IR
– Import Price Index -
CPILFESL
– Core Consumer Price Index -
PCEPILFE
– Core PCE Price Index -
PCEPI
– PCE Price Index -
PERMIT
– Building Permits -
TCU
– Capacity Utilization Rate -
BUSINV
– Business Inventories -
ULCNFB
– Unit Labor Cost -
IQ
– Export Price Index -
GACDISA066MSFRBNY
– Empire State Mfg Index -
GACDFSA066MSFRBPHI
– Philadelphia Fed Mfg Index -
PCEC96
– Real Consumption Spending -
GDPC1
– Real Gross Domestic Product -
ICSA
– Weekly Unemployment Claims -
DGS10
– 10-year Treasury rates -
T10Y2Y
– 2-10 year Treasury rate spread -
WALCL
– Total Assets -
PALLFNFINDEXM
– Global Price Index of All Commodities -
FEDFUNDS
– Federal Funds Effective Rate -
PPIACO
– Producer Price Index All Commodities -
CIVPART
– Labor Force Participation Rate
Author(s)
Fred Viole, OVVO Financial Systems
References
Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments" https://www.amazon.com/dp/1490523995/ref=cm_sw_su_dp
Viole, F. (2019) "Multi-variate Time-Series Forecasting: Nonparametric Vector Autoregression Using NNS" https://www.ssrn.com/abstract=3489550
Viole, F. (2020) "NOWCASTING with NNS" https://www.ssrn.com/abstract=3589816
Examples
## Not run:
## Interpolates / Extrapolates all variables to current month
NNS.nowcast(h = 0)
## Additional regressors and sources specified
NNS.nowcast(h = 0, additional.regressors = c("SPY", "USO"),
additional.sources = c("yahoo", "yahoo"))
### PREDICTION INTERVALS
## Store NNS.nowcast output
nns_estimates <- NNS.nowcast(h = 12)
# Create bootstrap replicates using NNS.meboot (GDP Variable)
gdp_replicates <- NNS.meboot(nns_estimates$ensemble$GDPC1,
rho = seq(0,1,.25),
reps = 100)["replicates",]
replicates <- do.call(cbind, gdp_replicates)
# Apply UPM.VaR and LPM.VaR for desired prediction interval...95 percent illustrated
# Tail percentage used in first argument per {LPM.VaR} and {UPM.VaR} functions
lower_GDP_CIs <- apply(replicates, 1, function(z) LPM.VaR(0.025, 0, z))
upper_GDP_CIs <- apply(replicates, 1, function(z) UPM.VaR(0.025, 0, z))
# View results
cbind(nns_estimates$ensemble$GDPC1, lower_GDP_CIs, upper_GDP_CIs)
## End(Not run)