NNS.dep {NNS} | R Documentation |
NNS Dependence
Description
Returns the dependence and nonlinear correlation between two variables based on higher order partial moment matrices measured by frequency or area.
Usage
NNS.dep(x, y = NULL, asym = FALSE, p.value = FALSE, print.map = FALSE)
Arguments
x |
a numeric vector, matrix or data frame. |
y |
|
asym |
logical; |
p.value |
logical; |
print.map |
logical; |
Value
Returns the bi-variate "Correlation"
and "Dependence"
or correlation / dependence matrix for matrix input.
Note
For asymmetrical (asym = TRUE)
matrices, directional dependence is returned as ([column variable] —> [row variable]).
Author(s)
Fred Viole, OVVO Financial Systems
References
Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments" https://www.amazon.com/dp/1490523995/ref=cm_sw_su_dp
Examples
## Not run:
set.seed(123)
x <- rnorm(100) ; y <- rnorm(100)
NNS.dep(x, y)
## Correlation / Dependence Matrix
x <- rnorm(100) ; y <- rnorm(100) ; z <- rnorm(100)
B <- cbind(x, y, z)
NNS.dep(B)
## End(Not run)