nmadt.hsroc.MNAR {NMADiagT} | R Documentation |
Network Meta-Analysis Using the hierarchical model
Description
nmadt.hsroc.MNAR
performs network meta-analysis of diagnostic tests using the HSROC (hierarchical summary receiver operating characteristic) model (Lian et al. 2019) based on the MNAR assumption.
Usage
nmadt.hsroc.MNAR(nstu, K, data, testname, directory = NULL, eta = 0,
xi_preci = 1.25, digits = 4, gamma1, gamma0, mu_gamma = 0,
preci_gamma = 1, n.adapt = 10000, n.iter = 50000, n.chains = 3,
n.burnin = floor(n.iter/2), n.thin = max(1, floor((n.iter -
n.burnin)/1e+05)), conv.diag = FALSE, trace = NULL, dic = FALSE,
mcmc.samples = FALSE)
Arguments
nstu |
an integer indicating the number of studies included in the dataset. |
K |
an integer indicating the number of candiate test in the dataset. |
data |
a list conating the input dataset to be used for meta-analysis. |
testname |
a string vector of the names of the candidate tests in the dataset in the same order as presetned in the dataset. |
directory |
a string specifying the designated directory to save trace plots or potential scale reduction factors calculated in the function. The default is NULL. |
eta |
a number indicating the mean of log(S) and log(P) which determines the covariance matrices of the cutoff values and accuracy values respectively. The default is 0. |
xi_preci |
a number indicating the precision of log(S) and log(P) which determines the covariance matrices of the cutoff values and accuracy values respectively. The default is 1.25. |
digits |
a positive integer he number of digits to the right of the decimal point to keep for the results; digits=4 by default. |
gamma1 |
a vector indicating coefficients of study-specific sensitivity in the MNAR model. |
gamma0 |
a vector indicating coefficients of study-specific specificity in the MNAR model. |
mu_gamma |
a number specifying mean of intercept in the MNAR model. The default is 0. |
preci_gamma |
a number specifying precision of intercept in the MNAR model. The default is 1. |
n.adapt |
a positive integer indicating the number of iterations for adaptation. The default is 5,000. |
n.iter |
a postive integer indicating the number of iterations in each MCMC chain. The default is 50,000. |
n.chains |
a postive interger indicating the number of MCMC chains. The default is 3. |
n.burnin |
a positive integer indicating the number of burn-in iterations at the beginning of each chain without saving any of the posterior samples. The default is |
n.thin |
the thinning rate for MCMC chains, which is used to save memory and computation time when |
conv.diag |
a logical value specifying whether to compute potential scale reduction factors proposed for convergence diagnostics. The default is |
trace |
a string vector containing a subset of different quantities which can be chosen from prevalence( |
dic |
a logical value indicating whether the function will output the deviance information criterion (DIC) statistic. The default is |
mcmc.samples |
a logical value indicating whether the coda samples generated in the meta-analysis. The default is |
Value
A list with the raw output for graphing the results, the effect size estimates, which lists the posterior mean, standard deviation, median, and a $95$% equal tail credible interval for the median.
References
Lian Q, Hodges JS, Chu H (2019). “A Bayesian Hierarchical Summary Receiver Operating Characteristic Model for Network Meta-Analysis of Diagnostic Tests.” Journal of the American Statistical Association, 114(527), 949-961. doi: 10.1080/01621459.2018.1476239.
Examples
kangdata<-read.csv(file=system.file("extdata","kangdata.csv",package="NMADiagT"),
header=TRUE, sep=",")
set.seed(9)
kangMNAR.out.hsroc <- nmadt.hsroc.MNAR(nstu=12, K=2, data=kangdata,
testname=c("D-dimer","Ultrasonography"),gamma1=c(-0.5,-0.5), gamma0=c(-0.5,-0.5))