asym_m_ng {NGBVS} | R Documentation |
Modified NG prior via FS scores
Description
Modified Normal Gamma prior calculates the posterior distribution for the fine mapping cases-controls study. The number of case-controls must be greater than the number of SNPs.
Usage
asym_m_ng (y, data, FS, medstar = c(0.01, 0.0001), numb = 100, burnin = 1, every = 1)
Arguments
y |
A vector of the pheontype, where takes 0s and 1s. |
data |
An |
FS |
FS scores for each SNP and it takes value from 0 and 1 or NA for missing FS. |
medstar |
The value of M where M takes two values. |
numb |
Number of samples for each SNP. |
burnin |
The amount of burn-in for the MCMC sample. |
every |
The amount of thining for the MCMC sample. |
Value
A list including:
alpha |
A vector of the posterior distribution of the intercept. |
beta |
A matrix of the posterior distribution of the effect sizes. |
psi |
A matrix of the posterior distribution of |
lambda |
A vector of the posterior distribution of |
gammasq |
A vector of the posterior distribution of |
W |
A vector of the posterior distribution of |
H |
A vector of the posterior distribution of |
Author(s)
Abulaziz Alenazi.
R implementation and documentation: Abulaziz Alenazi a.alenazi@nbu.edu.sa.
Examples
set.seed(1)
data <- matrix(sample( c( 0, 1, 2 ), 500 * 30, replace = TRUE,
prob <- c( 0.35, 0.35, 0.3)), ncol = 30 )
FS <- sample( c( 0.1, 0.5, 0.7, NA ), ncol( data ), replace = TRUE)
asym_m_ng(y = rbinom(500, 1, 0.5), data = data, FS = FS)