variable_selection {NBtsVarSel} | R Documentation |
Variable selection
Description
This function performs variable selection, estimates new vectors of beta and gamma and a new alpha
Usage
variable_selection(Y, X, gamma.init, alpha.init = NULL, k.max = 1, method = "cv",
tr = 0.3, n.iter = 100, n.rep = 1000)
Arguments
Y |
Observation matrix |
X |
Design matrix |
gamma.init |
Initial gamma vector |
alpha.init |
Optional initial alpha value. The default is NULL |
k.max |
Number of iteration to repeat the whole algorithm |
method |
Stability selection method: "min" or "cv". In "min" the smallest lambda is chosen, in "cv" cross-validation lambda is chosen for stability selection. The default is "cv" |
tr |
Threshold for stability selection. The default is 0.3 |
n.iter |
Number of iteration for Newton-Raphson algorithm. The default is 100 |
n.rep |
Number of replications in stability selection step. The default is 1000 |
Value
estim_active |
Estimated active coefficients |
beta_est |
Vector of estimated beta values |
gamma_est |
Vector of estimated gamma values |
alpha_est |
Estimation of alpha |
Author(s)
Marina Gomtsyan
Maintainer: Marina Gomtsyan <mgomtsian@gmail.com>
References
M. Gomtsyan "Variable selection in a specific regression time series of counts.", arXiv:2307.00929
Examples
n = 50
p = 30
X = matrix(NA,(p+1),n)
f = 1/0.7
for(t in 1:n){X[,t] = c(1,cos(2*pi*(1:(p/2))*t*f/n),sin(2*pi*(1:(p/2))*t*f/n))}
gamma0 = c(0)
data(Y)
result = variable_selection(Y, X, gamma.init=gamma0, alpha.init=NULL, k.max=1, method="cv",
tr=0.3, n.iter=100, n.rep=1000)
beta_est = result$beta_est
Estim_active = result$estim_active
gamma_est = result$gamma_est
alpha_est = result$alpha_est