grad_hess_gamma {NBtsVarSel} | R Documentation |
Gradient and Hessian of the log-likelihood with respect to gamma
Description
This function calculates the gradient and Hessian of the log-likelihood with respect to gamma
Usage
grad_hess_gamma(Y, X, beta, gamma, alpha)
Arguments
Y |
Observation matrix |
X |
Design matrix |
beta |
Initial beta vector |
gamma |
Initial gamma vector |
alpha |
Initial overdispertion parameter |
Value
grad_L_gamma |
Vector of the gradient of L with respect to gamma |
hess_L_gamma |
Matrix of the Hessian of L with respect to gamma |
Author(s)
Marina Gomtsyan
Maintainer: Marina Gomtsyan <mgomtsian@gmail.com>
References
M. Gomtsyan "Variable selection in a specific regression time series of counts.", arXiv:2307.00929
Examples
n = 50
p = 30
X = matrix(NA,(p+1),n)
f = 1/0.7
for(t in 1:n){X[,t] = c(1,cos(2*pi*(1:(p/2))*t*f/n),sin(2*pi*(1:(p/2))*t*f/n))}
gamma0 = c(0)
data(Y)
glm_nb = glm.nb(Y~t(X)[,2:(p+1)])
beta0 = as.numeric(glm_nb$coefficients)
alpha0 = glm_nb$theta
result = grad_hess_gamma(Y, X, beta0, gamma0, alpha0)
grad = result$grad_L_gamma
Hessian = result$hess_L_gamma
[Package NBtsVarSel version 1.0 Index]