| normalise {NACHO} | R Documentation |
(re)Normalise a "nacho" object
Description
This function creates a list in which your settings, the raw counts and normalised counts are stored,
using the result from a call to load_rcc().
Usage
normalise(
nacho_object,
housekeeping_genes = nacho_object[["housekeeping_genes"]],
housekeeping_predict = nacho_object[["housekeeping_predict"]],
housekeeping_norm = nacho_object[["housekeeping_norm"]],
normalisation_method = nacho_object[["normalisation_method"]],
n_comp = nacho_object[["n_comp"]],
remove_outliers = nacho_object[["remove_outliers"]],
outliers_thresholds = nacho_object[["outliers_thresholds"]]
)
Arguments
nacho_object |
[list] A list object of class |
housekeeping_genes |
[character] A vector of names of the miRNAs/mRNAs
that should be used as housekeeping genes. Default is |
housekeeping_predict |
[logical] Boolean to indicate whether the housekeeping genes
should be predicted ( |
housekeeping_norm |
[logical] Boolean to indicate whether the housekeeping normalisation
should be performed. Default is |
normalisation_method |
[character] Either |
n_comp |
[numeric] Number indicating the number of principal components to compute.
Cannot be more than n-1 samples. Default is |
remove_outliers |
[logical] A boolean to indicate if outliers should be excluded. |
outliers_thresholds |
[list] List of thresholds to exclude outliers. |
Details
Outliers definition (remove_outliers = TRUE):
Binding Density (
BD) < 0.1Binding Density (
BD) > 2.25Field of View (
FoV) < 75Positive Control Linearity (
PCL) < 0.95Limit of Detection (
LoD) < 2Positive normalisation factor (
Positive_factor) < 0.25Positive normalisation factor (
Positive_factor) > 4Housekeeping normalisation factor (
house_factor) < 1/11Housekeeping normalisation factor (
house_factor) > 11
Value
[list] A list containing parameters and data.
access[character] Value passed to
load_rcc()inid_colname.housekeeping_genes[character] Value passed to
load_rcc()ornormalise().housekeeping_predict[logical] Value passed to
load_rcc().housekeeping_norm[logical] Value passed to
load_rcc()ornormalise().normalisation_method[character] Value passed to
load_rcc()ornormalise().remove_outliers[logical] Value passed to
normalise().n_comp[numeric] Value passed to
load_rcc().data_directory[character] Value passed to
load_rcc().pc_sum[data.frame] A
data.framewithn_comprows and four columns: "Standard deviation", "Proportion of Variance", "Cumulative Proportion" and "PC".nacho[data.frame] A
data.framewith all columns from the sample sheetssheet_csvand all computed columns, i.e., quality-control metrics and counts, with one sample per row.outliers_thresholds[list] A
listof the quality-control thresholds used.raw_counts[data.frame] Raw counts with probes as rows and samples as columns. With
"CodeClass"(first column), the type of the probes and"Name"(second column), the Name of the probes.normalised_counts[data.frame] Normalised counts with probes as rows and samples as columns. With
"CodeClass"(first column)), the type of the probes and"Name"(second column), the name of the probes.
Examples
data(GSE74821)
GSE74821_norm <- normalise(
nacho_object = GSE74821,
housekeeping_norm = TRUE,
normalisation_method = "GEO",
remove_outliers = TRUE
)
if (interactive()) {
library(GEOquery)
library(NACHO)
# Import data from GEO
gse <- GEOquery::getGEO(GEO = "GSE74821")
targets <- Biobase::pData(Biobase::phenoData(gse[[1]]))
GEOquery::getGEOSuppFiles(GEO = "GSE74821", baseDir = tempdir())
utils::untar(
tarfile = file.path(tempdir(), "GSE74821", "GSE74821_RAW.tar"),
exdir = file.path(tempdir(), "GSE74821")
)
targets$IDFILE <- list.files(
path = file.path(tempdir(), "GSE74821"),
pattern = ".RCC.gz$"
)
targets[] <- lapply(X = targets, FUN = iconv, from = "latin1", to = "ASCII")
utils::write.csv(
x = targets,
file = file.path(tempdir(), "GSE74821", "Samplesheet.csv")
)
# Read RCC files and format
nacho <- load_rcc(
data_directory = file.path(tempdir(), "GSE74821"),
ssheet_csv = file.path(tempdir(), "GSE74821", "Samplesheet.csv"),
id_colname = "IDFILE"
)
# (re)Normalise data by removing outliers
nacho_norm <- normalise(
nacho_object = nacho,
remove_outliers = TRUE
)
# (re)Normalise data with "GLM" method and removing outliers
nacho_norm <- normalise(
nacho_object = nacho,
normalisation_method = "GLM",
remove_outliers = TRUE
)
}