Cov_based {NAC} | R Documentation |
Covariates-based Spectral Clustering.
Description
Covariates-based Spectral Clustering is a spectral clustering
method that focuses solely on the covariates structure, i.e., the XX^{\prime}
where X
is the
covariates matrix, as introduced in Lee et al. (2010).
Usage
Cov_based(Covariate, K, itermax = 100, startn = 10)
Arguments
Covariate |
An |
K |
A positive integer which is no larger than |
itermax |
|
startn |
|
Value
estall |
A factor indicating nodes' labels. Items sharing the same label are in the same community. |
References
Lee, A. B., Luca, D., Klei, L., Devlin, B., & Roeder, K. (2010).
Discovering genetic ancestry using spectral graph theory.
Genetic Epidemiology: The Official Publication of the International Genetic Epidemiology Society,
34(1), 51-59.
doi:10.1002/gepi.20434
Examples
# Simulate the Covariate Matrix
n = 10; p = 5; K = 2; prob1 = 0.9;
set.seed(2022)
l = sample(1:K, n, replace=TRUE); # node labels
Pi = matrix(0, n, K) # label matrix
for (k in 1:K){
Pi[l == k, k] = 1
}
Q = 0.1*matrix(sign(runif(p*K) - 0.5), nrow = p);
for(i in 1:K){
Q[(i-1)*(p/K)+(1:(p/K)), i] = 0.3; #remark. has a change here
}
W = matrix(0, nrow = n, ncol = K);
for(jj in 1:n) {
pp = rep(1/(K-1), K); pp[l[jj]] = 0;
if(runif(1) <= prob1) {W[jj, 1:K] = Pi[jj, ];}
else
W[jj, sample(K, 1, prob = pp)] = 1;
}
W = t(W)
D0 = Q %*% W
D = matrix(0, n, p)
for (i in 1:n){
D[i,] = rnorm(p, mean = D0[,i], sd = 1);
}
Cov_based(D, 2)