rrrBayes {MultiwayRegression} | R Documentation |
Bayesian inference for reduced rank regression
Description
Performs Bayesian inference for a linear model to estimate one multi-way array from another, under the restriction that the coefficient array has given PARAFAC rank.
Usage
rrrBayes(X,Y,Inits,X.new,R=1,lambda=0,Samples=1000, thin=1,seed=0)
Arguments
X |
A predictor array of dimension N x P_1 x ... x P_L for the training data. |
Y |
An outcome array of dimension N x Q_1 x ... x Q_M for the training data. |
Inits |
Initial values. Inits$U gives a list of length L where Inits$U[[l]]: P_l x R gives the coefficient basis for the l'th mode of X. Inits$V gives a list of length M where Inits$V[[m]]: Q_m x R gives the coefficient basis for the m'th mode of Y. Can be the output of rrr(...). |
X.new |
Predictor array of dimension M x P_1 x ... x P_L. Each row gives the entries for a new P_1 x ... x P_L predictor observation in vectorized form. |
R |
Assumed rank of the P_1 x ... x P_L x Q_1 x ... x Q_M coefficient array. |
lambda |
Ridge ($L_2$) penalty parameter for the coefficient array, inversely proportional to the variance of the coefficients under a Gaussian prior. |
Samples |
Length of the MCMC sampling chain. |
thin |
Thinning value, for thin=j, only every j'th observation in the MCMC chain is saved. |
seed |
Random seed for generation of initial values. |
Value
An array of dimension (Samples/thin) x M x Q_1 x ... x Q_M, giving (Samples/thin) samples from the posterior predictive of the outcome array predicted by Xmat.new.
Author(s)
Eric F. Lock
References
Lock, E. F. (2018). Tensor-on-tensor regression. Journal of Computational and Graphical Statistics, 27 (3): 638-647, 2018.