MultiwayRegression-package {MultiwayRegression} | R Documentation |
Perform tensor-on-tensor regression
Description
Functions to predict one multi-way array (i.e., a tensor) from another multi-way array, using a low-rank CANDECOMP/PARAFAC (CP) factorization and a ridge (L_2) penalty. Also includes functions to sample from the Bayesian posterior of a tensor-on-tensor model.
Details
Package: | MultiwayRegression-package |
Type: | Package |
Version: | 1.2 |
Date: | 2019-05-28 |
License: | GPL-3 |
Author(s)
Eric F. Lock
Maintainer: Eric F. Lock <elock@umn.edu>
References
Lock, E. F. (2018). Tensor-on-tensor regression. Journal of Computational and Graphical Statistics, 27 (3): 638-647, 2018.
Examples
data(SimData) ##loads simulated X: 100 x 15 x 20 and Y: 100 x 5 x 10
Results <- rrr(X,Y,R=2) ##Fit rank 2 model with no regularization
Y_pred <- ctprod(X,Results$B,2) ##Array of fitted values
[Package MultiwayRegression version 1.2 Index]