DeaMultiplierModel {MultiplierDEA} | R Documentation |
DEA Multiplier Model
Description
DEA multiplier model calculates the efficieny and reference sets for each DMUs.
Usage
DeaMultiplierModel(x = x, y = y, rts = "crs", orientation = "input", weightRestriction)
Arguments
x |
Inputs or resources used by each decision making unit. |
y |
Outputs or resources used by each decision making unit. |
rts |
Returns to scale for the application, or industry studied. Note the default rts is crs. vrs Variable returns to scale. crs Constant returns to scale. Available option: crs, vrs |
orientation |
Orientation of the DEA model - primary emphasis on input-reduction or output-augmentation output. Note that unlike the DEA functions, the default is input orientation. Available option: input, output. |
weightRestriction |
Weight restriction for the model. Optional parameter. |
Value
The function returns a number of values per DMU. The standardized efficiency (all inefficiencies are between 0 and 1, for input and output orientation). Efficiency, and lambda values are returned.
$rts |
Returns to scale of the model. |
$Orientation |
Orientation of the model. |
$InputValues |
Input Values (x) passed to the model. |
$OutputValues |
Output Values (y) passed to the model. |
$Efficiency |
Efficiency of each DMU in the model. |
$Lambda |
Lambdas per DMU in the model. |
$HCU_Input |
HCU data for inputs. |
$HCU_Output |
HCU data for outputs. |
$vx |
Input weights from the model. |
$uy |
Output weights from the model. |
$Free_Weights |
Free weights from the model. Applies only to vrs returns-to-scale. |
$Model_Status |
Returns the status of the LP model. |
Examples
#Example from Kenneth R. Baker: Optimization Modeling with Spreadsheets, Third Edition,p. 176,
#John Wiley and Sons, Inc.
dmu <- c("A", "B", "C", "D", "E", "F")
x <- data.frame(c(150,400,320,520,350,320),c(0.2,0.7,1.2,2.0,1.2,0.7))
rownames(x) <- dmu
colnames(x)[1] <- c("StartHours")
colnames(x)[2] <- c("Supplies")
y <- data.frame(c(14,14,42,28,19,14),c(3.5,21,10.5,42,25,15))
rownames(y) <- dmu
colnames(y)[1] <- c("Reimbursed")
colnames(y)[2] <- c("Private")
#Creating the weight restriction data frame with Upper bound
weightRestriction<-data.frame(lower = c(1), numerator = c("StartHours"),
denominator = c("Supplies"), upper = c(2))
#Creating the weight restriction data frame without Upper bound
weightRestriction<-data.frame(lower = c(1), numerator = c("StartHours"),
denominator = c("Supplies"))
#Creating the weight restriction data frame with Upper bound and Na, Inf or NaN
weightRestriction<-data.frame(lower = c(1,2), numerator = c("StartHours","Reimbursed"),
denominator = c("Supplies","Private"), upper = c(2,Inf))
# Calculate the efficiency score without weight Restriction
result <- DeaMultiplierModel(x,y,"crs", "input")
# Examine the efficiency score for DMUs
print(result$Efficiency)
# Calculate the efficiency score with weight Restriction
result <- DeaMultiplierModel(x,y,"crs", "input", weightRestriction)
# Examine the efficiency score for DMUs
print(result$Efficiency)