| MR.mean {MultiRobust} | R Documentation | 
Multiply Robust Estimation of the Marginal Mean
Description
MR.mean() is used to estimate the marginal mean of a variable which is subject to missingness. Multiple missingness probability models and outcome regression models can be accommodated.
Usage
MR.mean(response, reg.model = NULL, mis.model = NULL, moment = NULL,
  order = 1, data, bootstrap = FALSE, bootstrap.size = 300,
  alpha = 0.05)
Arguments
| response | The response variable of interest whose marginal mean is to be estimated. | 
| reg.model | A list of outcome regression models defined by  | 
| mis.model | A list of missingness probability models defined by  | 
| moment | A vector of auxiliary variables whose moments are to be calibrated. | 
| order | A numeric value. The order of moments up to which to be calibrated. | 
| data | A data frame with missing data encoded as  | 
| bootstrap | Logical. If  | 
| bootstrap.size | A numeric value. Number of bootstrap resamples generated if  | 
| alpha | Significance level used to construct the 100(1 -  | 
Value
| mu | The estimated value of the marginal mean. | 
| SE | The bootstrap standard error of  | 
| CI | A Wald-type confidence interval based on  | 
| weights | The calibration weights if any  | 
References
Han, P. and Wang, L. (2013). Estimation with missing data: beyond double robustness. Biometrika, 100(2), 417–430.
Han, P. (2014). A further study of the multiply robust estimator in missing data analysis. Journal of Statistical Planning and Inference, 148, 101–110.
Examples
# Simulated data set
set.seed(123)
n <- 400
gamma0 <- c(1, 2, 3)
alpha0 <- c(-0.8, -0.5, 0.3)
X <- runif(n, min = -2.5, max = 2.5)
p.mis <- 1 / (1 + exp(alpha0[1] + alpha0[2] * X + alpha0[3] * X ^ 2))
R <- rbinom(n, size = 1, prob = 1 - p.mis)
a.x <- gamma0[1] + gamma0[2] * X + gamma0[3] * exp(X)
Y <- rnorm(n, a.x, sd = sqrt(4 * X ^ 2 + 2))
dat <- data.frame(X, Y)
dat[R == 0, 2] <- NA
# Define the outcome regression models and missingness probability models
reg1 <- glm.work(formula = Y ~ X + exp(X), family = gaussian)
reg2 <- glm.work(formula = Y ~ X + I(X ^ 2), family = gaussian)
mis1 <- glm.work(formula = R ~ X + I(X ^ 2), family = binomial(link = logit))
mis2 <- glm.work(formula = R ~ X + exp(X), family = binomial(link = cloglog))
MR.mean(response = Y, reg.model = list(reg1, reg2), 
        mis.model = list(mis1, mis2), data = dat)
MR.mean(response = Y, moment = c(X), order = 2, data = dat)