MultiLCIRT-package | Multidimensional Latent Class (LC) Item Response Theory (IRT) Models |
aggr_data | Aggregate data |
class_item | Hierarchical classification of test items |
compare_models | Compare different models fitted by est_multi_poly |
est_multi_glob | Fit marginal regression models for categorical responses |
est_multi_poly | Estimate multidimensional LC IRT model for dichotomous and polytomous responses |
est_multi_poly_clust | Estimate multidimensional and multilevel LC IRT model for dichotomous and polytomous responses |
hads | Dataset about measurement of anxiety and depression in oncological patients |
inv_glob | Invert marginal logits |
lk_obs_score | Compute observed log-likelihood and score |
lk_obs_score_clust | Compute observed log-likelihood and score |
matr_glob | Matrices to compute generalized logits |
MultiLCIRT | Multidimensional Latent Class (LC) Item Response Theory (IRT) Models |
naep | NAEP dataset |
print.class_item | Print the output of class_item object |
print.est_multi_poly | Print the output of est_multi_poly object |
print.est_multi_poly_clust | Print the output of est_multi_poly_clust object |
print.test_dim | Print the output of test_dim object |
prob_multi_glob | Global probabilities |
search.model | Search for the global maximum of the log-likelihood |
standard.matrix | Standardization of a matrix of support points on the basis of a vector of probabilities |
summary.class_item | Print the output of class_item object |
summary.est_multi_poly | Print the output of test_dim object |
summary.est_multi_poly_clust | Print the output of est_multi_poly_clust object |
summary.test_dim | Print the output of test_dim object |
test_dim | Likelihood ratio testing between nested multidimensional LC IRT models |