SIR_prob {MultiBD} | R Documentation |
Transition probabilities of an SIR process
Description
Computes the transition pobabilities of an SIR process using the bivariate birth process representation
Usage
SIR_prob(t, alpha, beta, S0, I0, nSI, nIR, direction = c("Forward",
"Backward"), nblocks = 20, tol = 1e-12, computeMode = 0, nThreads = 4)
Arguments
t |
time |
alpha |
removal rate |
beta |
infection rate |
S0 |
initial susceptible population |
I0 |
initial infectious population |
nSI |
number of infection events |
nIR |
number of removal events |
direction |
direction of the transition probabilities (either |
nblocks |
number of blocks |
tol |
tolerance |
computeMode |
computation mode |
nThreads |
number of threads |
Value
a matrix of the transition probabilities
Examples
data(Eyam)
loglik_sir <- function(param, data) {
alpha <- exp(param[1]) # Rates must be non-negative
beta <- exp(param[2])
if(length(unique(rowSums(data[, c("S", "I", "R")]))) > 1) {
stop ("Please make sure the data conform with a closed population")
}
sum(sapply(1:(nrow(data) - 1), # Sum across all time steps k
function(k) {
log(
SIR_prob( # Compute the forward transition probability matrix
t = data$time[k + 1] - data$time[k], # Time increment
alpha = alpha, beta = beta,
S0 = data$S[k], I0 = data$I[k], # From: R(t_k), I(t_k)
nSI = data$S[k] - data$S[k + 1], nIR = data$R[k + 1] - data$R[k],
computeMode = 4, nblocks = 80 # Compute using 4 threads
)[data$S[k] - data$S[k + 1] + 1,
data$R[k + 1] - data$R[k] + 1] # To: R(t_(k+1)), I(t_(k+1))
)
}))
}
loglik_sir(log(c(3.204, 0.019)), Eyam) # Evaluate at mode
[Package MultiBD version 0.2.0 Index]