mcmc_cmp {MultRegCMP} | R Documentation |
MCMC Algorithm for Conway-Maxwell-Poisson Regression Model for Multivariate Correlated Count Data
Description
MCMC Algorithm to estimate the parameters in the regression model for multivariate correlated count data
Usage
mcmc_cmp(
y,
X,
S = 10000,
nburn = 5000,
initial_beta,
initial_gamma,
initial_b,
prior_mean_beta,
prior_var_beta,
prior_mean_gamma,
prior_var_gamma,
v_0,
R_0,
intercept = FALSE,
scale_b,
scale_beta,
scale_gamma,
scale_cov_b,
scale_cov_beta,
scale_cov_gamma,
inc_burn = FALSE,
re_chain = TRUE,
way = 2,
random_seed,
...
)
Arguments
y |
Matrix of observations |
X |
Covariates list, each element is the design matrix for each column of y |
S |
Number of MCMC samples to be drawn |
nburn |
Number of MCMC samples to burn-in |
initial_beta |
List with initial value of |
initial_gamma |
List with initial value of |
initial_b |
Initital value of |
prior_mean_beta |
Prior mean for |
prior_var_beta |
Prior covariance matrix for |
prior_mean_gamma |
Prior mean for |
prior_var_gamma |
Prior covariance matrix for |
v_0 |
Prior degrees of freedom of random effects |
R_0 |
Prior covariance matrix of random effects |
intercept |
Logical value indicating whether include the intercept |
scale_b |
Covariance matrix for RW proposals of the random effects (Default |
scale_beta |
List with initial values for the scale matrices of |
scale_gamma |
List with initial values for the scale matrices of |
scale_cov_b |
Scale parameter for the RW of random effects. (Default |
scale_cov_beta |
Scale parameter for the covariance of the proposals. |
scale_cov_gamma |
Scale parameter for the covariance of the proposals. |
inc_burn |
logical: include burned samples in the return |
re_chain |
logical: If the posterior samples for the r.e are include. False return just the mean |
way |
How to calculate the MCMC updates, based on Chib (2001) |
random_seed |
Random seed |
... |
Additional parameters of the MCMC algorithm |
Value
A list:
posterior_b |
List with posterior values of the random effects |
estimation_beta |
Estimation of beta parameters |
posterior_beta |
List with posterior values of beta |
estimation_gamma |
Estimation of gamma parameters |
posterior_gamma |
List with posterior values of gamma |
posterior_D |
Values of covariance matrix D |
fitted_mu |
Posterior of location parameters for each response |
fitted_nu |
Posterior of shape parameters for ecah response |
accept_rate_b |
Acceptance rate of Random Effects |
accept_rate_beta |
Acceptance rate of beta |
accept_rate_gamma |
Acceptance rate of gamma |
scale_beta |
Estimated Scale matrix for beta parameters |
scale_gamma |
Estimated Scale matrix for gamma parameters |
X |
List of covariates used |
y |
Matrix of observed counts |
Examples
n = 50; J = 2
X = list(matrix(rnorm(3*n), ncol = 3), matrix(rnorm(3*n), ncol = 3))
beta <- list(c(1,0.1, 1), c(0, 0.5, -0.5))
mu <- exp(prod_list(X, beta))
y = matrix(rpois(n = length(mu), lambda = mu), nrow = n)
fit <- mcmc_cmp(y, X, S = 10000, nburn = 1000, scale_cov_b = 0.8,
scale_cov_beta = 0.04, scale_cov_gamma = 0.06)