RegScore {Morpho} | R Documentation |
calulate regression scores for linear model
Description
calulate regression scores for linear model as specified in Drake & Klingenberg(2008)
Usage
RegScore(model, x = NULL)
Arguments
model |
linear model |
x |
optional: matrix containing fitted data to be projected onto the regression lines. If omitted the model's fitted values will be used. |
Details
the data are orthogonally projected onto the regression lines associated with each factor.
Value
returns a n x m matrix containing the regression scores for each specimen.
Warning
if model
contains factors with more than 2 levels, R calculates one regression line per 2 factors. Check the colnames
of the returned matrix to select the appropriate one. See examples for details.
References
Drake, AG. & Klingenberg, CP. The pace of morphological change: historical transformation of skull shape in St Bernard dogs. Proceedings of the Royal Society B: Biological Sciences, The Royal Society, 2008, 275, 71-76.
Examples
model <- lm(as.matrix(iris[,1:3]) ~ iris[,4])
rs <- RegScore(model)
plot(rs,iris[,4])
##now use a random subsample for model fitting
rand <- sample(nrow(iris))
x <- iris[rand[1:100],4]
newmod <- lm(as.matrix(iris[rand[1:100],1:3]) ~ x)
##predict the rest of data and get their regression scores
rsPred <- RegScore(newmod,as.matrix(iris[rand[101:150],1:3]))
plot(rsPred,iris[rand[101:150],4])
## Not run:
data(boneData)
proc <- procSym(boneLM)
pop.sex <- name2factor(boneLM,which=3:4) # generate a factor with 4 levels
lm.ps.size <- lm(proc$PCscores ~ pop.sex+proc$size)
rs <- RegScore(lm.ps.size)
colnames(rs) # in this case, the last column contains the regression
# scores associated with proc$size
## validate by using a subsample for fitting
rand <- sample(dim(boneLM)[3])
lm.ps.size0 <- lm(proc$PCscores[rand[1:50],] ~ proc$size[rand[1:50]])
rs0 <- RegScore(lm.ps.size0,proc$PCscores[rand[-c(1:50)],] )
plot(rs0,proc$size[rand[-c(1:50)]])
## End(Not run)