pairwise.se {Monte.Carlo.se} | R Documentation |
Standard Errors for Paired Comparisons of Monte Carlo Output Summaries
Description
pairwise.se
— gives jackknife and bootstrap SEs for all the pairwise difference or
ratios of Monte Carlo summaries.
Usage
pairwise.se(
x,
xcol,
diff = TRUE,
digits = 4,
B = 0,
seed = NULL,
summary.f,
...
)
Arguments
x |
vector from N independent Monte Carlo replications |
xcol |
columns of x to be used |
diff |
If TRUE (default), uses differences; if diff=F, uses ratios |
digits |
number of digits to retain in output data frame |
B |
B=0 means use jackknife (default), B>0 means use bootstrap with B resamples, If B>0, then a seed must be given to start the bootstrap resampling |
seed |
seed=NULL (default) used with jackknife, otherwise needs a positive integer |
summary.f |
summary function computed from x (e.g., mean, median, var) |
... |
Additional arguments to be passed |
Details
Suppose that an N-vector of Monte Carlo output (thus, a sample of size N)
is produced from N
independent Monte Carlo samples, and a summary statistic like the mean or variance is to be
reported in a table.
pairwise.se
gives Monte Carlo standard errors (SEs) for all pairwise differences
or ratios of these summary statistics.
The vignette vignette("Example3", package = "Monte.Carlo.se")
is a detailed account of using pairwise.se
.
Value
Returns a data frame of the indiviual ith and jth column summaries (summi and summj), the differences or ratios of those summaries (summary), MC standard error of the difference or ratio, MC sample size N, method (jackknife or bootstrap), B and seed if bootstrap is used
Author(s)
Dennis Boos, Kevin Matthew, Jason Osborne
References
Boos, D. D., and Osborne, J. A. (2015), "Assessing Variability of Complex Descriptive Statistics in Monte Carlo Studies using Resampling Methods," International Statistical Review, 25, 775-792.
Examples
# Using the output data matrix hold generated in vignette Example3,
# calculate jackknife and bootstrap standard errors
# for the differences and ratios of the CV estimates.
# Jackknife SE of Differences of CVs
# pairwise.se(hold,xcol=10:12,summary.f=cv)
# elem summi summj summary se t.stat N method
# 1 10 11 0.6884 0.7030 -0.0146 0.0299 -0.4877 1000 Jackknife
# 2 10 12 0.6884 0.6489 0.0395 0.0195 2.0274 1000 Jackknife
# 3 11 12 0.7030 0.6489 0.0541 0.0311 1.7374 1000 Jackknife
# Jackknife SE of Ratios of CVs
# pairwise.se(hold,xcol=10:12,diff=FALSE,summary.f=cv)
# elem summi summj summary se t.stat N method
# 1 10 11 0.6884 0.7030 0.9792 0.0429 -0.4833 1000 Jackknife
# 2 10 12 0.6884 0.6489 1.0608 0.0321 1.8972 1000 Jackknife
# 3 11 12 0.7030 0.6489 1.0833 0.0475 1.7531 1000 Jackknife
# Bootstrap SE of Differences of CVs
# pairwise.se(hold,xcol=10:12,B=1000,seed=770,summary.f=cv)
# elem summi summj summary se t.stat B seed N method
# 1 10 11 0.6884 0.7030 -0.0146 0.0278 -0.5250 1000 770 1000 Bootstrap
# 2 10 12 0.6884 0.6489 0.0395 0.0182 2.1671 1000 770 1000 Bootstrap
# 3 11 12 0.7030 0.6489 0.0541 0.0303 1.7844 1000 770 1000 Bootstrap
# Bootstrap SE of Ratios of CVs
# pairwise.se(hold,xcol=10:12,diff=FALSE,B=1000,seed=770,summary.f=cv)
# elem summi summj summary se t.stat B seed N method
# 1 10 11 0.6884 0.7030 0.9792 0.0390 -0.5316 1000 770 1000 Bootstrap
# 2 10 12 0.6884 0.6489 1.0608 0.0292 2.0797 1000 770 1000 Bootstrap
# 3 11 12 0.7030 0.6489 1.0833 0.0430 1.9372 1000 770 1000 Bootstrap