boot.se {Monte.Carlo.se} | R Documentation |
Bootstrap Standard Error
Description
boot.se
– gives a bootstrap standard error (SE=estimated standard deviation)
Usage
boot.se(x, B, theta, ...)
Arguments
x |
vector of data |
B |
number of bootstrap resamples (replications) |
theta |
function (statistic) applied to the data (e.g., mean, median, var) |
... |
Additional arguments to be passed |
Details
The code was modified from code associated with the appendix of Efron and Tibshirani (1993)
Value
Returns the bootstrap SE of theta(x)
Author(s)
Dennis Boos, Kevin Matthew, Jason Osborne
References
Efron and Tibshirani (1993), _An Introduction to the Bootstrap_.
Boos, D. D., and Osborne, J. A. (2015), "Assessing Variability of Complex Descriptive Statistics in Monte Carlo Studies using Resampling Methods," International Statistical Review, 25, 775-792.
See Also
jack.se
– mc.se.vector
–
mc.se.matrix
Examples
# simple example, data from Boos and Osborne (2105, Table 3)
# using theta=coefficient of variation mean/sd
x=c(1,2,79,5,17,11,2,15,85)
cv=function(x){sd(x)/mean(x)}
cv(x)
# [1] 1.383577
# bootstrap SE using B=1000
set.seed(384)
boot.se(x,B=1000,theta=cv)
# [1] 0.3416897
# More complex example using two samples, se for ratio of means
# data from Higgins (2003, problem 4.4, p. 142), LDH readings on 7 patients
before=c(89,90,87,98,120,85,97)
after=c(76,101,84,86,105,84,93)
# requires function using row index as "data", real data is extra parameter xdata
ratio.means <- function(index,xdata)
{mean(xdata[index,1])/mean(xdata[index,2])}
ratio.means(index=1:7,xdata=data.frame(before,after))
# [1] 1.058824
# boostrap SE for ratio of means
set.seed(2917)
boot.se(x=1:7,B=1000,theta=ratio.means,xdata=data.frame(before,after))
# [1] 0.03576659
# To illustrate use with Monte Carlo output, first create some sample data
# 10,000 samples of size 15 from the Laplace (double exp) distribution
N<-10000
set.seed(450)
z1 <- matrix(rexp(N*15),nrow=N)
z2 <- matrix(rexp(N*15),nrow=N)
z<-(z1-z2)/sqrt(2) # subtract standard exponentials
out.m.15 <- apply(z,1,mean)
out.t20.15 <- apply(z,1,mean,trim=0.20)
out.med.15 <- apply(z,1,median)
# The three datasets (out.m.15,out.t20.15,out.med.15) each contain 10000 values.
# If we want use the variance of each column in a table, then to get
# the Monte Carlo standard error of those 3 variances,
set.seed(250)
boot.se(out.m.15,B=1000,theta = var)
# [1] 0.0009373835
boot.se(out.t20.15,B=1000,theta = var)
# [1] 0.0007086057
boot.se(out.med.15,B=1000,theta = var)
# [1] 0.0008307258
# ends donttest
# Function Code
boot.se<-function(x, B, theta, ...){
call <- match.call()
n <- length(x)
bootsam <- matrix(sample(x, size = n * B, replace = T), nrow = B)
thetastar <- apply(bootsam, 1, theta, ...)
se <- sd(thetastar)
return(se)
}
[Package Monte.Carlo.se version 0.1.1 Index]