| MonoInc {MonoInc} | R Documentation | 
Monotonic Increasing
Description
Combines many of the functions in the MonoInc package. Given a data range, weights, and imputation methods of choice, MonoInc will impute flagged values using either one or a combination of two imputation methods. It can also perform all single imputation methods for comparison.
Usage
MonoInc(data, id.col, x.col, y.col, data.r = NULL, tol = 0, direction = "inc", w1 = 0.5, 
  min, max, impType1 = "nn", impType2 = "reg", sum = FALSE)
Arguments
data | 
 a data.frame or matrix of measurement data  | 
id.col | 
 column where the id's are stored  | 
x.col | 
 column where x values, or time variable is stored  | 
y.col | 
 column where y values, or measurements are stored  | 
data.r | 
 range for y values; must have three columns: 1 - must match values in xcol, 2 - lower range values, 3 - upper range values  | 
tol | 
 tolerance; how much outside of the range (data.r) is acceptable; same units as data in ycol  | 
direction | 
 the direction of the function a choice between increasing 'inc', and decreasing 'dec'  | 
w1 | 
 weight of imputation type 1 (impType1); default is 0.50  | 
min | 
 lowest acceptable value for measurement; does not have to be a number in ycol  | 
max | 
 highest acceptable value for measurement; does not have to be a number in ycol  | 
impType1 | 
 imputation method 1, a choice between Nearest Neighbor "nn", Regression "reg", Fractional Regression "fr", Last Observation Carried Forward "locf", or Last & Next "ln"; default is "nn"  | 
impType2 | 
 imputation method 2; default is "reg"  | 
sum | 
 if true the function will return a matrix of all imputation methods in the package  | 
Details
If two imputation methods are chosen, MonoInc will take a weighted average of the output of the imputed values. User must chose one or two imputation methods or sum=TRUE for a comparison. If there are not enough values available to impute missing or erroneous values, MonoInc will return an NA. Advice: Do NOT overwrite original data using this function! Use parallel processing if available on your device.
Value
Returns the data matrix with additional columns for the selected imputation method. If sum=TRUE, it will return a column for each single imputation method. The Y column will have NAs, indicating that this observation was flagged and imputed, for summary only. Duplicate rows are removed.
Author(s)
Michele Josey mjosey@nccu.edu Melyssa Minto mminto@nccu.edu
Examples
data(simulated_data)
simulated_data <- simulated_data[1:1000,]
data(data.r)
library(sitar)
## Run MonoInc
sum <- MonoInc(simulated_data, 1,2,3, data.r,5,direction='inc', w1=0.3, min=30, max=175, 
    impType1=NULL, impType2=NULL, sum=TRUE)
head(sum)
test <- MonoInc(simulated_data, 1,2,3, data.r,5,direction='inc', w1=0.3, min=30, max=175, 
    impType1="nn", impType2="fr")
head(test)
## plot longitudinal height for each id
mplot(x=X, y=Nn.Fr, data=test)
tol <- 5
lines(data.r[,1], data.r[,2]-tol, col=2, lty=2)
lines(data.r[,1], data.r[,3]+tol, col=2, lty=2)