| PCA {Momocs} | R Documentation |
Principal component analysis on Coe objects
Description
Performs a PCA on Coe objects, using prcomp.
Usage
PCA(x, scale., center, fac)
## S3 method for class 'OutCoe'
PCA(x, scale. = FALSE, center = TRUE, fac)
## S3 method for class 'OpnCoe'
PCA(x, scale. = FALSE, center = TRUE, fac)
## S3 method for class 'LdkCoe'
PCA(x, scale. = FALSE, center = TRUE, fac)
## S3 method for class 'TraCoe'
PCA(x, scale. = TRUE, center = TRUE, fac)
## Default S3 method:
PCA(x, scale. = TRUE, center = TRUE, fac = dplyr::tibble())
as_PCA(x, fac)
Arguments
x |
a Coe object or an appropriate object (eg prcomp) for |
scale. |
logical whether to scale the input data |
center |
logical whether to center the input data |
fac |
any factor or data.frame to be passed to |
Details
By default, methods on Coe object do not scale the input data but center them. There is also a generic method (eg for traditional morphometrics) that centers and scales data.
Value
a 'PCA' object on which to apply plot.PCA, among others. This list has several
components, most of them inherited from the prcomp object:
-
sdevthe standard deviations of the principal components (i.e., the square roots of the eigenvalues of the covariance/correlation matrix, though the calculation is actually done with the singular values of the data matrix) -
eigthe cumulated proportion of variance along the PC axes -
rotationthe matrix of variable loadings (i.e., a matrix whose columns contain the eigenvectors). The function princomp returns this in the element loadings. -
center, scale the centering and scaling used -
xPCA scores (the value of the rotated data (the centred (and scaled if requested) data multiplied by the rotation matrix)) other components are inherited from the
Coeobject passed toPCA, egfac,mshape,method,baseline1andbaseline2, etc. They are documented in the corresponding*Coefile.
See Also
Other multivariate:
CLUST(),
KMEANS(),
KMEDOIDS(),
LDA(),
MANOVA_PW(),
MANOVA(),
MDS(),
MSHAPES(),
NMDS(),
classification_metrics()
Examples
bot.f <- efourier(bot, 12)
bot.p <- PCA(bot.f)
bot.p
plot(bot.p, morpho=FALSE)
plot(bot.p, 'type')
op <- npoly(olea, 5)
op.p <- PCA(op)
op.p
plot(op.p, 1, morpho=TRUE)
wp <- fgProcrustes(wings, tol=1e-4)
wpp <- PCA(wp)
wpp
plot(wpp, 1)
# "foreign prcomp"
head(iris)
iris.p <- prcomp(iris[, 1:4])
iris.p <- as_PCA(iris.p, iris[, 5])
class(iris.p)
plot(iris.p, 1)