MANOVA {Momocs} | R Documentation |
Multivariate analysis of (co)variance on Coe objects
Description
Performs multivariate analysis of variance on PCA objects.
Usage
MANOVA(x, fac, test = "Hotelling", retain, drop)
## S3 method for class 'OpnCoe'
MANOVA(x, fac, test = "Hotelling", retain, drop)
## S3 method for class 'OutCoe'
MANOVA(x, fac, test = "Hotelling", retain, drop)
## S3 method for class 'PCA'
MANOVA(x, fac, test = "Hotelling", retain = 0.99, drop)
Arguments
x |
a Coe object |
fac |
a name of a colum in the |
test |
a test for manova ( |
retain |
how many harmonics (or polynomials) to retain, for PCA the highest number of PC axis to retain, or the proportion of the variance to capture. |
drop |
how many harmonics (or polynomials) to drop |
Details
Performs a MANOVA/MANCOVA on PC scores. Just a wrapper around manova. See examples for multifactorial manova and summary.manova for more details and examples.
Value
a list of matrices of (x,y) coordinates.
Note
Needs a review and should be considered as experimental.
Silent message and progress bars (if any) with options("verbose"=FALSE)
.
See Also
Other multivariate:
CLUST()
,
KMEANS()
,
KMEDOIDS()
,
LDA()
,
MANOVA_PW()
,
MDS()
,
MSHAPES()
,
NMDS()
,
PCA()
,
classification_metrics()
Examples
# MANOVA
bot.p <- PCA(efourier(bot, 12))
MANOVA(bot.p, 'type')
op <- PCA(npoly(olea, 5))
MANOVA(op, 'domes')
m <- manova(op$x[, 1:5] ~ op$fac$domes * op$fac$var)
summary(m)
summary.aov(m)
# MANCOVA example
# we create a numeric variable, based on centroid size
bot %<>% mutate(cs=coo_centsize(.))
# same pipe
bot %>% efourier %>% PCA %>% MANOVA("cs")