LDA {Momocs} | R Documentation |
Linear Discriminant Analysis on Coe objects
Description
Calculates a LDA on Coe on top of MASS::lda.
Usage
LDA(x, fac, retain, ...)
## Default S3 method:
LDA(x, fac, retain, ...)
## S3 method for class 'PCA'
LDA(x, fac, retain = 0.99, ...)
Arguments
x |
a Coe or a PCA object |
fac |
the grouping factor (names of one of the $fac column or column id) |
retain |
the proportion of the total variance to retain (if retain<1) using scree, or the number of PC axis (if retain>1). |
... |
additional arguments to feed lda |
Value
a 'LDA' object on which to apply plot.LDA, which is a list with components:
-
x
any Coe object (or a matrix) -
fac
grouping factor used -
removed
ids of columns in the original matrix that have been removed since constant (if any) -
mod
the raw lda mod from lda -
mod.pred
the predicted model using x and mod -
CV.fac
cross-validated classification -
CV.tab
cross-validation tabke -
CV.correct
proportion of correctly classified individuals -
CV.ce
class error -
LDs
unstandardized LD scores see Claude (2008) -
mshape
mean values of coefficients in the original matrix -
method
inherited from the Coe object (if any)
Note
For LDA.PCA, retain can be passed as a vector (eg: 1:5, and retain=1, retain=2, ..., retain=5) will be tried, or as "best" (same as before but retain=1:number_of_pc_axes is used).
Silent message and progress bars (if any) with options("verbose"=FALSE)
.
See Also
Other multivariate:
CLUST()
,
KMEANS()
,
KMEDOIDS()
,
MANOVA_PW()
,
MANOVA()
,
MDS()
,
MSHAPES()
,
NMDS()
,
PCA()
,
classification_metrics()
Examples
bot.f <- efourier(bot, 24)
bot.p <- PCA(bot.f)
LDA(bot.p, 'type', retain=0.99) # retains 0.99 of the total variance
LDA(bot.p, 'type', retain=5) # retain 5 axis
bot.l <- LDA(bot.p, 'type', retain=0.99)
plot_LDA(bot.l)
bot.f <- mutate(bot.f, plop=factor(rep(letters[1:4], each=10)))
bot.l <- LDA(PCA(bot.f), 'plop')
plot_LDA(bot.l) # will replace the former soon