momentsTMD {MomTrunc} | R Documentation |
Moments for doubly truncated multivariate distributions
Description
It computes kappa-th order moments for for some doubly truncated skew-elliptical distributions. It supports the p
-variate Normal, Skew-normal (SN) and Extended Skew-normal (ESN), as well as the Student's-t, Skew-t (ST) and the Extended Skew-t (EST) distribution.
Usage
momentsTMD(kappa,lower = rep(-Inf,length(mu)),upper = rep(Inf,length(mu)),mu,Sigma,
lambda = NULL,tau = NULL,nu = NULL,dist)
Arguments
kappa |
moments vector of length |
lower |
the vector of lower limits of length |
upper |
the vector of upper limits of length |
mu |
a numeric vector of length |
Sigma |
a numeric positive definite matrix with dimension |
lambda |
a numeric vector of length |
tau |
It represents the extension parameter for the ESN distribution. If |
nu |
It represents the degrees of freedom for the Student's t-distribution being a positive real number. |
dist |
represents the truncated distribution to be used. The values are |
Details
Univariate case is also considered, where Sigma
will be the variance .
Value
A data frame containing columns. The
first containing the set of combinations of exponents summing up to
kappa
and the last column containing the the expected value. Normal cases (ESN, SN and normal) return prod(kappa)+1
moments while the Student's t-distribution case returns all moments of order up to kappa
. See example section.
Note
If nu >= 300
, Normal case is considered."
Author(s)
Christian E. Galarza <cgalarza88@gmail.com> and Victor H. Lachos <hlachos@uconn.edu>
Maintainer: Christian E. Galarza <cgalarza88@gmail.com>
References
Galarza, C. E., Lin, T. I., Wang, W. L., & Lachos, V. H. (2021). On moments of folded and truncated multivariate Student-t distributions based on recurrence relations. Metrika, 84(6), 825-850.
Galarza-Morales, C. E., Matos, L. A., Dey, D. K., & Lachos, V. H. (2022a). "On moments of folded and doubly truncated multivariate extended skew-normal distributions." Journal of Computational and Graphical Statistics, 1-11 <doi:10.1080/10618600.2021.2000869>.
Galarza, C. E., Matos, L. A., Castro, L. M., & Lachos, V. H. (2022b). Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution. Journal of Multivariate Analysis, 189, 104944 <doi:10.1016/j.jmva.2021.104944>.
Kan, R., & Robotti, C. (2017). On moments of folded and truncated multivariate normal distributions. Journal of Computational and Graphical Statistics, 26(4), 930-934.
See Also
onlymeanTMD
,meanvarTMD
,momentsFMD
,meanvarFMD
,dmvSN
,pmvSN
,rmvSN
, dmvESN
,pmvESN
,rmvESN
, dmvST
,pmvST
,rmvST
, dmvEST
,pmvEST
,rmvEST
Examples
a = c(-0.8,-0.7,-0.6)
b = c(0.5,0.6,0.7)
mu = c(0.1,0.2,0.3)
Sigma = matrix(data = c(1,0.2,0.3,0.2,1,0.4,0.3,0.4,1),
nrow = length(mu),ncol = length(mu),byrow = TRUE)
value1 = momentsTMD(c(2,0,1),a,b,mu,Sigma,dist="normal")
value2 = momentsTMD(c(2,0,1),a,b,mu,Sigma,dist = "t",nu = 7)
value3 = momentsTMD(c(2,0,1),a,b,mu,Sigma,lambda = c(-2,0,1),dist = "SN")
value4 = momentsTMD(c(2,0,1),a,b,mu,Sigma,lambda = c(-2,0,1),tau = 1,dist = "ESN")
#T cases with kappa scalar (all moments up to 3)
value5 = momentsTMD(3,a,b,mu,Sigma,nu = 7,dist = "t")
value6 = momentsTMD(3,a,b,mu,Sigma,lambda = c(-2,0,1),nu = 7,dist = "ST")
value7 = momentsTMD(3,a,b,mu,Sigma,lambda = c(-2,0,1),tau = 1,nu = 7,dist = "EST")