dprmvESN {MomTrunc}R Documentation

Multivariate Extended-Skew Normal Density, Probablilities and Random Deviates Generator

Description

These functions provide the density function, probabilities and a random number generator for the multivariate extended-skew normal (ESN) distribution with mean vector mu, scale matrix Sigma, skewness parameter lambda and extension parameter tau.

Usage

dmvESN(x,mu=rep(0,length(lambda)),Sigma=diag(length(lambda)),lambda,tau=0)
pmvESN(lower = rep(-Inf,length(lambda)),upper=rep(Inf,length(lambda)),
        mu = rep(0,length(lambda)),Sigma,lambda,tau,log2 = FALSE)
rmvESN(n,mu=rep(0,length(lambda)),Sigma=diag(length(lambda)),lambda,tau=0)

Arguments

x

vector or matrix of quantiles. If x is a matrix, each row is taken to be a quantile.

n

number of observations.

lower

the vector of lower limits of length p.

upper

the vector of upper limits of length p.

mu

a numeric vector of length p representing the location parameter.

Sigma

a numeric positive definite matrix with dimension pxp representing the scale parameter.

lambda

a numeric vector of length p representing the skewness parameter for SN and ESN cases. If lambda == 0, the ESN/SN reduces to a normal (symmetric) distribution.

tau

It represents the extension parameter for the ESN distribution. If tau == 0, the ESN reduces to a SN distribution.

log2

a boolean variable, indicating if the log2 result should be returned. This is useful when the true probability is too small for the machine precision.

Value

dmvESN gives the density, pmvESN gives the distribution function, and rmvESN generates random deviates for the Multivariate Extended-Skew Normal Distribution.

Author(s)

Christian E. Galarza <cgalarza88@gmail.com> and Victor H. Lachos <hlachos@uconn.edu>

Maintainer: Christian E. Galarza <cgalarza88@gmail.com>

References

Galarza, C. E., Lin, T. I., Wang, W. L., & Lachos, V. H. (2021). On moments of folded and truncated multivariate Student-t distributions based on recurrence relations. Metrika, 84(6), 825-850 <doi:10.1007/s00184-020-00802-1>.

Galarza, C. E., Matos, L. A., Dey, D. K., & Lachos, V. H. (2022a). "On moments of folded and doubly truncated multivariate extended skew-normal distributions." Journal of Computational and Graphical Statistics, 1-11 <doi:10.1080/10618600.2021.2000869>.

Galarza, C. E., Matos, L. A., Castro, L. M., & Lachos, V. H. (2022b). Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution. Journal of Multivariate Analysis, 189, 104944 <doi:10.1016/j.jmva.2021.104944>.

Galarza, C.E., Matos, L.A. and Lachos, V.H. (2022c). An EM algorithm for estimating the parameters of the multivariate skew-normal distribution with censored responses. Metron. <doi:10.1007/s40300-021-00227-4>.

Genz, A., (1992) "Numerical computation of multivariate normal probabilities," Journal of Computational and Graphical Statistics, 1, 141-149 <doi:10.1080/10618600.1992.10477010>.

See Also

dmvSN, pmvSN, rmvSN, meanvarFMD,meanvarTMD,momentsTMD

Examples

#Univariate case
dmvESN(x = -1,mu = 2,Sigma = 5,lambda = -2,tau = 0.5)
rmvESN(n = 100,mu = 2,Sigma = 5,lambda = -2,tau = 0.5)
#Multivariate case
mu = c(0.1,0.2,0.3,0.4)
Sigma = matrix(data = c(1,0.2,0.3,0.1,0.2,1,0.4,-0.1,0.3,0.4,1,0.2,0.1,-0.1,0.2,1),
               nrow = length(mu),ncol = length(mu),byrow = TRUE)
lambda = c(-2,0,1,2)
tau = 2
#One observation
dmvESN(x = c(-2,-1,0,1),mu,Sigma,lambda,tau)
rmvESN(n = 100,mu,Sigma,lambda,tau)
#Many observations as matrix
x = matrix(rnorm(4*10),ncol = 4,byrow = TRUE)
dmvESN(x = x,mu,Sigma,lambda,tau)

lower = rep(-Inf,4)
upper = c(-1,0,2,5)
pmvESN(lower,upper,mu,Sigma,lambda,tau)

[Package MomTrunc version 6.0 Index]