logLoss {ModelMetrics} | R Documentation |
Log Loss
Description
Calculates the log loss or entropy loss for a binary outcome
Usage
logLoss(...)
## Default S3 method:
logLoss(actual, predicted, distribution = "binomial", ...)
## S3 method for class 'glm'
logLoss(modelObject, ...)
## S3 method for class 'randomForest'
logLoss(modelObject, ...)
## S3 method for class 'glmerMod'
logLoss(modelObject, ...)
## S3 method for class 'gbm'
logLoss(modelObject, ...)
## S3 method for class 'rpart'
logLoss(modelObject, ...)
Arguments
... |
additional parameters to be passed the the s3 methods |
actual |
a binary vector of the labels |
predicted |
a vector of predicted values |
distribution |
the distribution of the loss function needed |
modelObject |
the model object. Currently supported |
Examples
data(testDF)
glmModel <- glm(y ~ ., data = testDF, family="binomial")
Preds <- predict(glmModel, type = 'response')
logLoss(testDF$y, Preds)
# using s3 method for glm
logLoss(glmModel)
[Package ModelMetrics version 1.2.2.2 Index]