soft.hmac {Modalclust} | R Documentation |
Plot soft clusters from Modal Clustering output
Description
Plot clusters for two dimensional data with colors representing the posterior probability of belonging to clusters. Additionally boundary points between the clusters, with specified thresholds are also
Usage
soft.hmac(hmacobj,n.cluster=NULL,level=NULL,boundlevel=0.4,plot=TRUE)
Arguments
hmacobj |
The output of HMAC analysis. An object of class 'hmac'. |
level |
The specified level of HMAC output |
n.cluster |
The specified number of clusters. If neither |
boundlevel |
Posterior probability threshold. Points having posterior probability below |
plot |
Get the two dimensional plot of the clusters with different colors. Default value is TRUE, which returns the two dimensional plot on the current graphics device; plot=FALSE returns the posterior probability of each observation. |
Value
Returns the list that contains the posterior probability of each observation and boundary points at specified level if plot=FALSE
Author(s)
Surajit Ray and Yansong Cheng
References
Li. J, Ray. S, Lindsay. B. G, "A nonparametric statistical approach to clustering via mode identification," Journal of Machine Learning Research , 8(8):1687-1723, 2007.
Lindsay, B.G., Markatou M., Ray, S., Yang, K., Chen, S.C. "Quadratic distances on probabilities: the foundations," The Annals of Statistics Vol. 36, No. 2, page 983–1006, 2008.
See Also
phmac
for front end of using modal clustering and also for parallel implementation of modal clustering
hard.hmac
for hard clustering at specified levels.
Examples
data(logcta20.hmac)
#logcta20.hmac is the output of phmac(logcta20,npart=1)
soft.hmac(logcta20.hmac,n.cluster=3)
#return the posterior probability of each observation and boundary points.
postprob=soft.hmac(hmacobj=logcta20.hmac,n.cluster=3,plot=FALSE)