phmac {Modalclust} | R Documentation |
Main function for performing Modal Clusters either parallel or serial mode.
Description
Performing Modal Clustering
Usage
phmac(dat, length = 10, npart = 1, parallel = TRUE, sigmaselect = NULL,
G= NULL)
modalclust(dat, length = 10, npart = 1, parallel = TRUE, sigmaselect = NULL,
G= NULL)
Arguments
dat |
Matrix of data points |
length |
number of smoothing levels. Default is 10 |
sigmaselect |
Specified Smoothing levels. Default NULL will calculate the Sigma levels using concept of spectral degrees of freedom given in Lindsay et al (2008) |
npart |
Number of random partitions when using parallel computing. If using several processors of a machine one option is to choose the number of partitions equal to the number of processors |
parallel |
If TRUE uses parallel comptation using |
G |
Specified values of modes. A matrix with number or rows equal to the number of modes and number of columns equal to the dimension of the data. Defualt value is NULL |
Value
data |
Same as the input Data |
n.cluster |
Number of clusters at each level. |
level |
Levels corresponding to each smoothing parameter. |
sigmas |
Same as input sigmaselect if provided or dynamically calculated smoothing levels based on Spectral Degrees of Freedom criterion. Uses the function khat.inv |
mode |
List of modes at each distinct levels. |
membership |
List of memmbership to modes at each distinct levels. |
Author(s)
Surajit Ray and Yansong Cheng
References
Li. J, Ray. S, Lindsay. B. G, "A nonparametric statistical approach to clustering via mode identification," Journal of Machine Learning Research , 8(8):1687-1723, 2007.
Lindsay, B.G., Markatou M., Ray, S., Yang, K., Chen, S.C. "Quadratic distances on probabilities: the foundations," The Annals of Statistics Vol. 36, No. 2, page 983–1006, 2008.
See Also
soft.hmac
for soft clustering at specified levels.
hard.hmac
for hard clustering at specified levels.
See plot.hmac
.
Examples
data(disc2d)
## Not run: disc2d.hmac=phmac(disc2d,npart=1)
plot.hmac(disc2d.hmac,level=2)
## For parallel implementation
## Not run: disc2d.hmac.parallel=phmac(disc2d,npart=2,parallel=TRUE)
soft.hmac(disc2d.hmac,level=2)
soft.hmac(disc2d.hmac,n.cluster=3)
hard.hmac(disc2d.hmac,n.cluster=3)