MoE_crit {MoEClust} | R Documentation |
MoEClust BIC, ICL, and AIC Model-Selection Criteria
Description
Computes the BIC (Bayesian Information Criterion), ICL (Integrated Complete Likelihood), and AIC (Akaike Information Criterion) for parsimonious mixture of experts models given the log-likelihood, the dimension of the data, the number of mixture components in the model, the numbers of parameters in the gating and expert networks respectively, and, for the ICL, the numbers of observations in each component.
Usage
MoE_crit(modelName,
loglik,
n,
d,
G,
gating.pen = G - 1L,
expert.pen = G * d,
z = NULL,
df = NULL)
Arguments
modelName |
A character string indicating the model. The help file for |
loglik |
The log-likelihood for a data set with respect to the Gaussian mixture model specified in the |
n , d , G |
The number of observations in the data, dimension of the data, and number of components in the Gaussian mixture model, respectively, used to compute |
gating.pen |
The number of parameters of the gating network of the MoEClust model. Defaults to |
expert.pen |
The number of parameters of the expert network of the MoEClust model. Defaults to |
z |
The |
df |
An alternative way to specify the number of estimated parameters (or 'used' degrees of freedom) exactly. If supplied, the arguments |
Details
The function is vectorised with respect to the arguments modelName
and loglik
.
If model
is an object of class "MoEClust"
with G
components, the number of parameters for the gating.pen
and expert.pen
are length(coef(model$gating))
and G * length(coef(model$expert[[1]]))
, respectively.
Models with a noise component are facilitated here too, provided the extra number of parameters are accounted for by the user.
Value
A simplified array containing the BIC, AIC, number of estimated parameters (df
) and, if z
is supplied, also the ICL, for each of the given input arguments.
Note
In order to speed up repeated calls to the function inside MoE_clust
, no checks take place.
Author(s)
Keefe Murphy - <keefe.murphy@mu.ie>
References
Biernacki, C., Celeux, G. and Govaert, G. (2000). Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(7): 719-725.
See Also
MoE_clust
, nVarParams
, mclustModelNames
Examples
MoE_crit(modelName=c("VVI", "VVE", "VVV"), n=120, d=8,
G=3, loglik=c(-4036.99, -3987.12, -3992.45))
data(CO2data)
GNP <- CO2data$GNP
model <- MoE_clust(CO2data$CO2, G=1:2, expert= ~ GNP)
G <- model$G
name <- model$modelName
ll <- max(model$loglik)
n <- length(CO2data$CO2)
z <- model$z
# Compare BIC from MoE_crit to the BIC of the model
(bic2 <- MoE_crit(modelName=name, loglik=ll, n=n, d=1, G=G, z=z,
expert.pen=G * length(coef(model$expert[[1]])))["bic",])
identical(unname(bic2), model$bic) #TRUE
# Make the same comparison with the known number of estimated parameters
(bic3 <- MoE_crit(loglik=ll, n=n, df=model$df, z=z)["bic",])
identical(unname(bic3), bic2) #TRUE