setMixedTS.param {MixedTS} | R Documentation |
Mixed Tempered Stable distribution
Description
setMixedTS
describes the Mixed Tempered Stable distribution introduced in Rroji and Mercuri (2014):
Definition
We say that a continuous random variable Y follows a Mixed Tempered Stable distribution if:
Y= mu0+ mu*V + sigma*sqrt{V}*Z
The conditional distribution of random variable given V=v is a standardized Tempered Stable with parameters (alpha, lambda_p*sqrt{v}, lambda_m)
(see Kuchler, U. and Tappe, S. 2014). The distribution of V is infinitely divisible defined on the positive axis.
Usage
setMixedTS.param(mu0 = numeric(), mu = numeric(),
sigma = numeric(), a, alpha = numeric(),
lambda_p = numeric(), lambda_m = numeric(),
param = numeric(), Mixing = "Gamma", paramMixing = list(), Parametrization = "A")
Arguments
mu0 |
a numeric object. |
mu |
a numeric object. |
sigma |
a numeric object. |
a |
a vector object. If numeric, the mixing density |
alpha |
a numeric object that takes value from 0 to 2. If alpha is fixed to 2, the Mixed Tempered Stable becomes the Normal Variance Mean mixture. |
lambda_p |
a positive numeric object. It is the right tempering parameter of the random variable |
lambda_m |
a positive numeric object. It is the left tempering parameter of the random variable |
param |
a numeric object containing the Mixed Tempered Stable parameters. It is not necessary if we use the previous inputs for defining the distribution. See documentation for more details. |
Mixing |
a string object indicating the nature of the mixing density |
paramMixing |
a list object. It is an empty list when |
Parametrization |
a character string. If
where
|
where V
is distributed as a Gamma(a, 1)
.
Details
For particular choices of the tempering parameters the tails of the MixedTS distribution can be heavy or semi-heavy. In particular if the Mixing density is a Gamma, we get the Variance Gamma (Madan and Seneta 1990) and the symmetric Geo-Stable distribution as special cases.
Value
This function returns an object of class "param.MixedTS"
.
Note
This class of distributions has the Normal Variance Mean Mixture (Barndorff-Nielsen et al. 1982) as special case.
References
Barndorff-Nielsen,O.E., Kent,J. and Sorensen, M. (1982): Normal variance-mean mixtures and z-distributions, International Statistical Review, 50, 145-159.
Kuchler, U. and Tappe, S. (2014): Exponential stockmodels driven by tempered stable processes. Journal of Econometrics,181 (1), 53-63.
Madan, D.B. and Seneta E. (1990): The variance gamma (V.G.) model for share market returns, Journal of Business, 63, 511-524
Rroji, E and Mercuri, L.(2014): Mixed Tempered Stable distribution UNIMI-Research Papers in Economics, Business, and Statistics, 64.
Examples
# Mixed Tempered Stable with Gamma Mixing density.
ParamEx1<-setMixedTS.param(mu0=0, mu=0, sigma=0.4, a=1.5,
alpha=0.8, lambda_p=4, lambda_m=1)
# Mixed Tempered Stable with Inverse Gaussian Mixing density.
## As first step we set the "a" parameter
## equal to the log mgf of the inverse gaussian random variable
# The log mgf of an Ig with parameter (lamb, mu1) is defined as:
logmgf<-("lamb/mu1*(1-sqrt(1-2*mu1^2/lamb*u))")
Mix<-"User"
# The parameters of the mixing density are set by the following command
# line:
parMix<-list(lamb=1,mu1=1)
ParamEx2<-setMixedTS.param(mu0=0, mu=0, sigma=0.4, a=logmgf,
alpha=0.8, lambda_p=4, lambda_m=1,
Mixing=Mix,paramMixing=parMix)