PsychDelta {MixedPsy} | R Documentation |
PSE/JND from GLM Using Delta Method
Description
Estimate Point of Subjective Equivalence (PSE), Just Noticeable
Difference (JND), and related Standard Errors of an individual participant
by means of Delta Method.
The method only applies to a GLM (object of class glm
) with one continuous
predictor and a probit link function.
Usage
PsychDelta(model.obj, alpha = 0.05, p = 0.75)
Arguments
model.obj |
the fitted psychometric function. An object of class |
alpha |
significance level of the confidence interval.Default is 0.05 (95% confidence interval). |
p |
probability value relative to the JND upper limit. Default is 0.75 (value for 50% JND). |
Details
PsychDelta
estimates PSE and JND of a psychometric
function (object of class glm
).
Value
PsychDelta
returns a matrix including estimate, standard error,
inferior and superior bounds of the confidence interval of PSE and JND. Confidence Intervals
are computed as: Estimate +/- z(1-(\alpha/2)) * Std.Error
.
Note
The function assumes that the first model coefficient is the intercept and the second is the slope. The estimate of the JND assumes a probit link function.
References
Faraggi, D., Izikson, P., & Reiser, B. (2003). Confidence intervals for the 50 per cent response dose. Statistics in medicine, 22(12), 1977-1988. https://doi.org/10.1002/sim.1368
Knoblauch, K., & Maloney, L. T. (2012). Modeling psychophysical data in R (Vol. 32). Springer Science & Business Media.
Moscatelli, A., Mezzetti, M., & Lacquaniti, F. (2012). Modeling psychophysical data at the population-level: The generalized linear mixed model. Journal of Vision, 12(11):26, 1-17. doi:10.1167/12.11.26
See Also
glm
for fitting a Generalized Linear Model to a single-subject response. glmer
for Generalized Linear Mixed Models (including fixed and random effects). MixDelta
for estimating PSE and JND at a population level
with delta method.
Examples
data.S1 <- subset(simul_data, Subject == "S1")
model.glm = glm(formula = cbind(Longer, Total - Longer) ~ X,
family = binomial(link = "probit"), data = data.S1)
PsychDelta(model.glm)